Elias G Balimponya, Maria S Dwiyanti, Toshiaki Ito, Shuntaro Sakaguchi, Koichi Yamamori, Yoshitaka Kanaoka, Yohei Koide, Yoshifumi Nagayoshi, Yuji Kishima
{"title":"利用NGS技术快速消除水稻育种者种子中的有害等位基因的种子管理。","authors":"Elias G Balimponya, Maria S Dwiyanti, Toshiaki Ito, Shuntaro Sakaguchi, Koichi Yamamori, Yoshitaka Kanaoka, Yohei Koide, Yoshifumi Nagayoshi, Yuji Kishima","doi":"10.1270/jsbbs.22058","DOIUrl":null,"url":null,"abstract":"<p><p>Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the <i>Snow-White Leaf1</i> (<i>SWL1</i>) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, <i>swl1-R332P</i>, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the <i>swl1-R332P</i> mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described <i>swl1</i> mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895803/pdf/","citationCount":"0","resultStr":"{\"title\":\"Seed management using NGS technology to rapidly eliminate a deleterious allele from rice breeder seeds.\",\"authors\":\"Elias G Balimponya, Maria S Dwiyanti, Toshiaki Ito, Shuntaro Sakaguchi, Koichi Yamamori, Yoshitaka Kanaoka, Yohei Koide, Yoshifumi Nagayoshi, Yuji Kishima\",\"doi\":\"10.1270/jsbbs.22058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the <i>Snow-White Leaf1</i> (<i>SWL1</i>) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, <i>swl1-R332P</i>, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the <i>swl1-R332P</i> mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described <i>swl1</i> mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895803/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.22058\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22058","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Seed management using NGS technology to rapidly eliminate a deleterious allele from rice breeder seeds.
Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the Snow-White Leaf1 (SWL1) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, swl1-R332P, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the swl1-R332P mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described swl1 mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.