长篇 COVID 研究文献。

Frontiers in research metrics and analytics Pub Date : 2023-03-24 eCollection Date: 2023-01-01 DOI:10.3389/frma.2023.1149091
Alan L Porter, Mark Markley, Nils Newman
{"title":"长篇 COVID 研究文献。","authors":"Alan L Porter, Mark Markley, Nils Newman","doi":"10.3389/frma.2023.1149091","DOIUrl":null,"url":null,"abstract":"<p><p>While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research \"players\" (countries, institutions, and authors) engaging in those topics. We provide access to results <i>via</i> a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement.</p>","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080666/pdf/","citationCount":"0","resultStr":"{\"title\":\"The long COVID research literature.\",\"authors\":\"Alan L Porter, Mark Markley, Nils Newman\",\"doi\":\"10.3389/frma.2023.1149091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research \\\"players\\\" (countries, institutions, and authors) engaging in those topics. We provide access to results <i>via</i> a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement.</p>\",\"PeriodicalId\":73104,\"journal\":{\"name\":\"Frontiers in research metrics and analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in research metrics and analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frma.2023.1149091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2023.1149091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 COVID-19 大流行演变成恶性程度较低的形式的同时,该病毒还引发了一系列鲜为人知的感染后症状,即长 COVID(LC),其影响令人震惊。这项文献计量学研究介绍了快速增长的长COVID研究领域[来自PubMed和科学网(WoS)的5,243篇文章],以使其知识内容更易于获取。文章探讨了 "什么?Where?谁?13 个主题的概念网格呈现了自下而上的主题集群。我们将这些主题与其他数据域进行细分,包括学科集中度、专题细节以及参与这些主题的研究 "参与者"(国家、机构和作者)的信息。我们通过 "仪表板 "网站提供结果访问。我们发现了一个增长强劲的多学科 LC 研究领域。在共享研究知识的基础上,该领域似乎联系紧密。不过,我们也观察到不同学科的研究活动明显集中。LC 研究 3 年来的数据趋势表明,心理和神经退行性症状、疲劳和肺部受累受到了更多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The long COVID research literature.

While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research "players" (countries, institutions, and authors) engaging in those topics. We provide access to results via a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Navigating algorithm bias in AI: ensuring fairness and trust in Africa. The ethics of knowledge sharing: a feminist examination of intellectual property rights and open-source materials in gender transformative methodologies. Complexity and phase transitions in citation networks: insights from artificial intelligence research. Designing measures of complex collaborations with participatory, evidence-centered design. Patent data-driven analysis of literature associations with changing innovation trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1