皮肤黑色素瘤免疫治疗诱导反应的病理学:当前证据和未来展望。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2023-05-01 Epub Date: 2022-10-05 DOI:10.1097/PAP.0000000000000375
Alice Indini, Maurizio Lombardo, Angelo Sidoni, Andrea Gianatti, Mario Mandalà, Daniela Massi
{"title":"皮肤黑色素瘤免疫治疗诱导反应的病理学:当前证据和未来展望。","authors":"Alice Indini,&nbsp;Maurizio Lombardo,&nbsp;Angelo Sidoni,&nbsp;Andrea Gianatti,&nbsp;Mario Mandalà,&nbsp;Daniela Massi","doi":"10.1097/PAP.0000000000000375","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last years, immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor activity and beneficial effects in patients with early and advanced melanoma. However, ICIs provide clinical benefit only in a minority of patients due to primary and/or acquired resistance mechanisms. Immunotherapy resistance is a complex phenomenon relying on genetic and epigenetic factors, which ultimately influence the interplay between cancer cells and the tumor microenvironment. Information is accumulating on the cellular and molecular mechanisms underlying the production of resistance and the resulting diminished therapeutic efficacy. In addition, current knowledge on predictors of response and toxicity to immunotherapy and on biomarkers that reliably identify resistant patients is in progress. In this review, we will focus on the tumor microenvironment changes induced by ICIs in melanoma, summarizing the available evidence of clinical trials in the neoadjuvant and metastatic setting. We will also overview the role of potential biomarkers in predicting disease response to ICIs, providing insight into current and future research in this field.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pathology of Immunotherapy-induced Responses in Cutaneous Melanoma: Current Evidences and Future Perspectives.\",\"authors\":\"Alice Indini,&nbsp;Maurizio Lombardo,&nbsp;Angelo Sidoni,&nbsp;Andrea Gianatti,&nbsp;Mario Mandalà,&nbsp;Daniela Massi\",\"doi\":\"10.1097/PAP.0000000000000375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last years, immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor activity and beneficial effects in patients with early and advanced melanoma. However, ICIs provide clinical benefit only in a minority of patients due to primary and/or acquired resistance mechanisms. Immunotherapy resistance is a complex phenomenon relying on genetic and epigenetic factors, which ultimately influence the interplay between cancer cells and the tumor microenvironment. Information is accumulating on the cellular and molecular mechanisms underlying the production of resistance and the resulting diminished therapeutic efficacy. In addition, current knowledge on predictors of response and toxicity to immunotherapy and on biomarkers that reliably identify resistant patients is in progress. In this review, we will focus on the tumor microenvironment changes induced by ICIs in melanoma, summarizing the available evidence of clinical trials in the neoadjuvant and metastatic setting. We will also overview the role of potential biomarkers in predicting disease response to ICIs, providing insight into current and future research in this field.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/PAP.0000000000000375\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000375","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几年里,免疫检查点抑制剂(ICIs)在早期和晚期黑色素瘤患者中显示出显著的抗肿瘤活性和有益效果。然而,由于原发性和/或获得性耐药性机制,ICI仅在少数患者中提供临床益处。免疫治疗耐药性是一种复杂的现象,依赖于遗传和表观遗传因素,这些因素最终影响癌症细胞与肿瘤微环境之间的相互作用。关于耐药性产生的细胞和分子机制以及由此导致的治疗效果下降的信息正在积累。此外,目前对免疫疗法反应和毒性的预测因素以及可靠识别耐药患者的生物标志物的了解正在进行中。在这篇综述中,我们将重点关注ICIs在黑色素瘤中诱导的肿瘤微环境变化,总结在新佐剂和转移环境中进行临床试验的可用证据。我们还将概述潜在生物标志物在预测ICIs疾病反应中的作用,为该领域当前和未来的研究提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pathology of Immunotherapy-induced Responses in Cutaneous Melanoma: Current Evidences and Future Perspectives.

Over the last years, immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor activity and beneficial effects in patients with early and advanced melanoma. However, ICIs provide clinical benefit only in a minority of patients due to primary and/or acquired resistance mechanisms. Immunotherapy resistance is a complex phenomenon relying on genetic and epigenetic factors, which ultimately influence the interplay between cancer cells and the tumor microenvironment. Information is accumulating on the cellular and molecular mechanisms underlying the production of resistance and the resulting diminished therapeutic efficacy. In addition, current knowledge on predictors of response and toxicity to immunotherapy and on biomarkers that reliably identify resistant patients is in progress. In this review, we will focus on the tumor microenvironment changes induced by ICIs in melanoma, summarizing the available evidence of clinical trials in the neoadjuvant and metastatic setting. We will also overview the role of potential biomarkers in predicting disease response to ICIs, providing insight into current and future research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1