{"title":"一种新的方法,更精确地定量m蛋白使用变量从免疫减去电泳和相关的生化分析。","authors":"Dragana Šegulja, Danica Matišić, Karmela Barišić, Dunja Rogić","doi":"10.11613/BM.2022.030703","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Due to limitations in currently used methodologies, the widely acknowledged approach for quantifying M-protein (MP) is not available. If employed as a source of quantitative data, the immunosubtraction electropherogram (IS-EPG), a qualitative analysis of MP, has the potential to overcome known analytical issues. The aim of this study is to explore measured and derived variables obtained from immunosubtraction electropherogram as a tool for quantifying MP and to compare the derived results to currently available methods.</p><p><strong>Materials and methods: </strong>Measurands were amplitudes of MP and albumin fractions. Assessed derived variables included also immunoglobulin (Ig) G, IgA, IgM and total protein data. Capillary electrophoresis was used for determination of MP (in % of total protein concentration, or concentration of MP in g/L) by perpendicular drop and tangent skimming method.</p><p><strong>Results: </strong>Passing-Bablok analysis showed the most comparable results in D1Ig and D1nIg variables, and the largest discrepancies in AD1nIg and AD2nIg variables. The background presence had greater impact on D1nIg comparison results than did on D1Ig results. The contribution of albumin fraction data did not improve the comparability of the results. The coefficients of variation of derived variables were lower (maximum 3.1%) than those obtained by densitometric measurements, regardless of MP concentration, polyclonal background, or migration pattern (2.3-37.7%).</p><p><strong>Conclusion: </strong>The amplitude of MP spike in IS-EPG is an valuable measurand to compute derived variables for quantifying MP. The most comparable results were achieved with the D1Ig variable. Patients with monoclonal gammopathy can benefit from increased precision employing an objective and background independent measurand, especially during longitudinal follow-up.</p>","PeriodicalId":9021,"journal":{"name":"Biochemia Medica","volume":"32 3","pages":"030701"},"PeriodicalIF":3.8000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344871/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel approach for more precise quantification of M-protein using variables derived from immunosubtraction electropherogram and associated biochemistry analytes.\",\"authors\":\"Dragana Šegulja, Danica Matišić, Karmela Barišić, Dunja Rogić\",\"doi\":\"10.11613/BM.2022.030703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Due to limitations in currently used methodologies, the widely acknowledged approach for quantifying M-protein (MP) is not available. If employed as a source of quantitative data, the immunosubtraction electropherogram (IS-EPG), a qualitative analysis of MP, has the potential to overcome known analytical issues. The aim of this study is to explore measured and derived variables obtained from immunosubtraction electropherogram as a tool for quantifying MP and to compare the derived results to currently available methods.</p><p><strong>Materials and methods: </strong>Measurands were amplitudes of MP and albumin fractions. Assessed derived variables included also immunoglobulin (Ig) G, IgA, IgM and total protein data. Capillary electrophoresis was used for determination of MP (in % of total protein concentration, or concentration of MP in g/L) by perpendicular drop and tangent skimming method.</p><p><strong>Results: </strong>Passing-Bablok analysis showed the most comparable results in D1Ig and D1nIg variables, and the largest discrepancies in AD1nIg and AD2nIg variables. The background presence had greater impact on D1nIg comparison results than did on D1Ig results. The contribution of albumin fraction data did not improve the comparability of the results. The coefficients of variation of derived variables were lower (maximum 3.1%) than those obtained by densitometric measurements, regardless of MP concentration, polyclonal background, or migration pattern (2.3-37.7%).</p><p><strong>Conclusion: </strong>The amplitude of MP spike in IS-EPG is an valuable measurand to compute derived variables for quantifying MP. The most comparable results were achieved with the D1Ig variable. Patients with monoclonal gammopathy can benefit from increased precision employing an objective and background independent measurand, especially during longitudinal follow-up.</p>\",\"PeriodicalId\":9021,\"journal\":{\"name\":\"Biochemia Medica\",\"volume\":\"32 3\",\"pages\":\"030701\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11613/BM.2022.030703\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11613/BM.2022.030703","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
A novel approach for more precise quantification of M-protein using variables derived from immunosubtraction electropherogram and associated biochemistry analytes.
Introduction: Due to limitations in currently used methodologies, the widely acknowledged approach for quantifying M-protein (MP) is not available. If employed as a source of quantitative data, the immunosubtraction electropherogram (IS-EPG), a qualitative analysis of MP, has the potential to overcome known analytical issues. The aim of this study is to explore measured and derived variables obtained from immunosubtraction electropherogram as a tool for quantifying MP and to compare the derived results to currently available methods.
Materials and methods: Measurands were amplitudes of MP and albumin fractions. Assessed derived variables included also immunoglobulin (Ig) G, IgA, IgM and total protein data. Capillary electrophoresis was used for determination of MP (in % of total protein concentration, or concentration of MP in g/L) by perpendicular drop and tangent skimming method.
Results: Passing-Bablok analysis showed the most comparable results in D1Ig and D1nIg variables, and the largest discrepancies in AD1nIg and AD2nIg variables. The background presence had greater impact on D1nIg comparison results than did on D1Ig results. The contribution of albumin fraction data did not improve the comparability of the results. The coefficients of variation of derived variables were lower (maximum 3.1%) than those obtained by densitometric measurements, regardless of MP concentration, polyclonal background, or migration pattern (2.3-37.7%).
Conclusion: The amplitude of MP spike in IS-EPG is an valuable measurand to compute derived variables for quantifying MP. The most comparable results were achieved with the D1Ig variable. Patients with monoclonal gammopathy can benefit from increased precision employing an objective and background independent measurand, especially during longitudinal follow-up.
期刊介绍:
Biochemia Medica is the official peer-reviewed journal of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Journal provides a wide coverage of research in all aspects of clinical chemistry and laboratory medicine. Following categories fit into the scope of the Journal: general clinical chemistry, haematology and haemostasis, molecular diagnostics and endocrinology. Development, validation and verification of analytical techniques and methods applicable to clinical chemistry and laboratory medicine are welcome as well as studies dealing with laboratory organization, automation and quality control. Journal publishes on a regular basis educative preanalytical case reports (Preanalytical mysteries), articles dealing with applied biostatistics (Lessons in biostatistics) and research integrity (Research integrity corner).