基于深度Q网络的城市公共卫生事件应急资源调度优化。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 DOI:10.1007/s00521-022-07696-2
Xianli Zhao, Guixin Wang
{"title":"基于深度Q网络的城市公共卫生事件应急资源调度优化。","authors":"Xianli Zhao,&nbsp;Guixin Wang","doi":"10.1007/s00521-022-07696-2","DOIUrl":null,"url":null,"abstract":"<p><p>In today's severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people's lives, adhering to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of CPU computing resources, making the cost too high.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401203/pdf/","citationCount":"2","resultStr":"{\"title\":\"Deep Q networks-based optimization of emergency resource scheduling for urban public health events.\",\"authors\":\"Xianli Zhao,&nbsp;Guixin Wang\",\"doi\":\"10.1007/s00521-022-07696-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In today's severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people's lives, adhering to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of CPU computing resources, making the cost too high.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401203/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07696-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07696-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

在全球新冠病毒肆虐的严峻形势下,应急资源调度仍存在效率问题,救援标准仍存在不足。为了人民群众的幸福安康,坚持人类命运共同体理念,城市突发公共卫生事件应急资源调度体系有待完善和完善。本文主要研究城市应急资源调度优化模型,利用深度强化学习算法构建应急资源分配系统框架,并利用deep Q Network路径规划算法对系统进行优化,达到优化提升城市应急资源高效调度的目的。最后,通过仿真实验,得出所研究的深度学习算法有助于应急资源调度优化系统。然而,随着深度学习的逐步发展,它的一些缺点也越来越明显。一个明显的缺陷是,构建一个基于深度学习的模型通常需要大量的CPU计算资源,使得成本过高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Q networks-based optimization of emergency resource scheduling for urban public health events.

In today's severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people's lives, adhering to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of CPU computing resources, making the cost too high.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1