{"title":"微生物特异性Foxp3+调节性T细胞可控制病理性T辅助反应。","authors":"David Usharauli, Tirumalai Kamala","doi":"10.1615/CritRevImmunol.2022046412","DOIUrl":null,"url":null,"abstract":"<p><p>Upon engaging cognate peptide MHC-II complexes (pMHC-IIs), naive CD4+ T cells differentiate and acquire several T helper (Th) fates, guided by a dynamic cytokine milieu following antigenic challenge. This physiological Th fate choice process is often erroneously conflated with a maladaptive pathological process historically termed Th polarization. Here we propose why these two processes are distinct and separable. We posit that, though innate signaling alone is sufficient for Th fate choice in naive CD4+ T cells, Th polarization instead strictly originates from pre-existing cross-reactive memory CD4+ T cells. We further posit that Th polarization is normally prevented by thymus-derived cross-reactive antigen-specific regulatory T cells (Tregs) and inevitably manifests as immunopathology when the Treg repertoire and the microbiota that maintains it are selectively depleted. Bifurcating Th fate choice and polarization delineate Th effector pathways more accurately and tangibly improve the scope of targeted therapies for allergies, autoimmune diseases, and effective vaccines.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"42 2","pages":"49-57"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota-Specific Foxp3+ Regulatory T Cells Could Control Pathological T Helper Responses.\",\"authors\":\"David Usharauli, Tirumalai Kamala\",\"doi\":\"10.1615/CritRevImmunol.2022046412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Upon engaging cognate peptide MHC-II complexes (pMHC-IIs), naive CD4+ T cells differentiate and acquire several T helper (Th) fates, guided by a dynamic cytokine milieu following antigenic challenge. This physiological Th fate choice process is often erroneously conflated with a maladaptive pathological process historically termed Th polarization. Here we propose why these two processes are distinct and separable. We posit that, though innate signaling alone is sufficient for Th fate choice in naive CD4+ T cells, Th polarization instead strictly originates from pre-existing cross-reactive memory CD4+ T cells. We further posit that Th polarization is normally prevented by thymus-derived cross-reactive antigen-specific regulatory T cells (Tregs) and inevitably manifests as immunopathology when the Treg repertoire and the microbiota that maintains it are selectively depleted. Bifurcating Th fate choice and polarization delineate Th effector pathways more accurately and tangibly improve the scope of targeted therapies for allergies, autoimmune diseases, and effective vaccines.</p>\",\"PeriodicalId\":55205,\"journal\":{\"name\":\"Critical Reviews in Immunology\",\"volume\":\"42 2\",\"pages\":\"49-57\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevImmunol.2022046412\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevImmunol.2022046412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Microbiota-Specific Foxp3+ Regulatory T Cells Could Control Pathological T Helper Responses.
Upon engaging cognate peptide MHC-II complexes (pMHC-IIs), naive CD4+ T cells differentiate and acquire several T helper (Th) fates, guided by a dynamic cytokine milieu following antigenic challenge. This physiological Th fate choice process is often erroneously conflated with a maladaptive pathological process historically termed Th polarization. Here we propose why these two processes are distinct and separable. We posit that, though innate signaling alone is sufficient for Th fate choice in naive CD4+ T cells, Th polarization instead strictly originates from pre-existing cross-reactive memory CD4+ T cells. We further posit that Th polarization is normally prevented by thymus-derived cross-reactive antigen-specific regulatory T cells (Tregs) and inevitably manifests as immunopathology when the Treg repertoire and the microbiota that maintains it are selectively depleted. Bifurcating Th fate choice and polarization delineate Th effector pathways more accurately and tangibly improve the scope of targeted therapies for allergies, autoimmune diseases, and effective vaccines.
期刊介绍:
Immunology covers a broad spectrum of investigations at the genes, molecular, cellular, organ and system levels to reveal defense mechanisms against pathogens as well as protection against tumors and autoimmune diseases. The great advances in immunology in recent years make this field one of the most dynamic and rapidly growing in medical sciences. Critical ReviewsTM in Immunology (CRI) seeks to present a balanced overview of contemporary adaptive and innate immune responses related to autoimmunity, tumor, microbe, transplantation, neuroimmunology, immune regulation and immunotherapy from basic to translational aspects in health and disease. The articles that appear in CRI are mostly obtained by invitations to active investigators. But the journal will also consider proposals from the scientific community. Interested investigators should send their inquiries to the editor before submitting a manuscript.