{"title":"乙酰胆碱抑制Medaka神经末梢GnRH神经元的自发放电活性。","authors":"Aiki Tanaka, Chie Umatani, Yoshitaka Oka","doi":"10.2108/zs220070","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrates generally possess hypophysiotropic and non-hypophysiotropic gonadotropin releasing hormone (GnRH) neurons. The terminal nerve (TN) GnRH neurons are known to belong to the non-hypophysiotropic neurons and have been suggested to modulate sexual behaviors. These neurons show spontaneous pacemaker firing activity and release neuropeptides GnRH and neuropeptide FF. Since the spontaneous firing activities of peptidergic neurons, including GnRH neurons, are believed to play important roles in the release of neuropeptides, understanding the regulatory mechanisms of these spontaneous firing activities is important. Here, we analyzed firing activities of the TN-GnRH neurons in medaka during application of acetylcholine (ACh), which is one of the essential neuromodulators in the brain. Whole cell patch clamp recording of TN-GnRH neurons demonstrated that ACh induces hyperpolarization and inhibits their pacemaker firing. Electrophysiological analysis using an antagonist for acetylcholine receptors and in situ hybridization analysis showed that firing of TN-GnRH neurons is inhibited via M2-type muscarinic acetylcholine receptor. These findings, taken together with literature from several other fish species (including teleosts and elasmobranchs), indicate that ACh may generally play an inhibitory role in modulating spontaneous activities of TN-GnRH neurons and thereby sexual behaviors in fish.</p>","PeriodicalId":24040,"journal":{"name":"Zoological Science","volume":"40 2","pages":"151-159"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acetylcholine Inhibits Spontaneous Firing Activity of Terminal Nerve GnRH Neurons in Medaka.\",\"authors\":\"Aiki Tanaka, Chie Umatani, Yoshitaka Oka\",\"doi\":\"10.2108/zs220070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertebrates generally possess hypophysiotropic and non-hypophysiotropic gonadotropin releasing hormone (GnRH) neurons. The terminal nerve (TN) GnRH neurons are known to belong to the non-hypophysiotropic neurons and have been suggested to modulate sexual behaviors. These neurons show spontaneous pacemaker firing activity and release neuropeptides GnRH and neuropeptide FF. Since the spontaneous firing activities of peptidergic neurons, including GnRH neurons, are believed to play important roles in the release of neuropeptides, understanding the regulatory mechanisms of these spontaneous firing activities is important. Here, we analyzed firing activities of the TN-GnRH neurons in medaka during application of acetylcholine (ACh), which is one of the essential neuromodulators in the brain. Whole cell patch clamp recording of TN-GnRH neurons demonstrated that ACh induces hyperpolarization and inhibits their pacemaker firing. Electrophysiological analysis using an antagonist for acetylcholine receptors and in situ hybridization analysis showed that firing of TN-GnRH neurons is inhibited via M2-type muscarinic acetylcholine receptor. These findings, taken together with literature from several other fish species (including teleosts and elasmobranchs), indicate that ACh may generally play an inhibitory role in modulating spontaneous activities of TN-GnRH neurons and thereby sexual behaviors in fish.</p>\",\"PeriodicalId\":24040,\"journal\":{\"name\":\"Zoological Science\",\"volume\":\"40 2\",\"pages\":\"151-159\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2108/zs220070\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2108/zs220070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
Acetylcholine Inhibits Spontaneous Firing Activity of Terminal Nerve GnRH Neurons in Medaka.
Vertebrates generally possess hypophysiotropic and non-hypophysiotropic gonadotropin releasing hormone (GnRH) neurons. The terminal nerve (TN) GnRH neurons are known to belong to the non-hypophysiotropic neurons and have been suggested to modulate sexual behaviors. These neurons show spontaneous pacemaker firing activity and release neuropeptides GnRH and neuropeptide FF. Since the spontaneous firing activities of peptidergic neurons, including GnRH neurons, are believed to play important roles in the release of neuropeptides, understanding the regulatory mechanisms of these spontaneous firing activities is important. Here, we analyzed firing activities of the TN-GnRH neurons in medaka during application of acetylcholine (ACh), which is one of the essential neuromodulators in the brain. Whole cell patch clamp recording of TN-GnRH neurons demonstrated that ACh induces hyperpolarization and inhibits their pacemaker firing. Electrophysiological analysis using an antagonist for acetylcholine receptors and in situ hybridization analysis showed that firing of TN-GnRH neurons is inhibited via M2-type muscarinic acetylcholine receptor. These findings, taken together with literature from several other fish species (including teleosts and elasmobranchs), indicate that ACh may generally play an inhibitory role in modulating spontaneous activities of TN-GnRH neurons and thereby sexual behaviors in fish.
期刊介绍:
Zoological Science is published by the Zoological Society of Japan and devoted to publication of original articles, reviews and editorials that cover the broad field of zoology. The journal was founded in 1984 as a result of the consolidation of Zoological Magazine (1888–1983) and Annotationes Zoologicae Japonenses (1897–1983), the former official journals of the Zoological Society of Japan. Each annual volume consists of six regular issues, one every two months.