裸子形电鱼的时间比较神经回路。

IF 0.9 4区 生物学 Q3 ZOOLOGY Zoological Science Pub Date : 2023-04-01 DOI:10.2108/zs220071
Masashi Kawasaki
{"title":"裸子形电鱼的时间比较神经回路。","authors":"Masashi Kawasaki","doi":"10.2108/zs220071","DOIUrl":null,"url":null,"abstract":"<p><p>Weakly electric fish possess electrosensory neural systems that are dedicated to detect microsecond time differences between sensory signals. Many features of this timing system, such as electroreceptor encoding, time-locked responses, and time-comparator neural circuit, are shared by closely related as well as distantly related electric fishes. The appearance and location of the time-comparator neural structures, however, are different among species. The timing systems of different electric fish species are compared.</p>","PeriodicalId":24040,"journal":{"name":"Zoological Science","volume":"40 2","pages":"119-127"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-Comparator Neural Circuits of Gymnotiform Electric Fishes.\",\"authors\":\"Masashi Kawasaki\",\"doi\":\"10.2108/zs220071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weakly electric fish possess electrosensory neural systems that are dedicated to detect microsecond time differences between sensory signals. Many features of this timing system, such as electroreceptor encoding, time-locked responses, and time-comparator neural circuit, are shared by closely related as well as distantly related electric fishes. The appearance and location of the time-comparator neural structures, however, are different among species. The timing systems of different electric fish species are compared.</p>\",\"PeriodicalId\":24040,\"journal\":{\"name\":\"Zoological Science\",\"volume\":\"40 2\",\"pages\":\"119-127\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2108/zs220071\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2108/zs220071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

弱电鱼拥有电感觉神经系统,专门用于检测感官信号之间微秒级的时间差。这种定时系统的许多特征,如电感受器编码、时间锁定响应和时间比较神经回路,都是近亲和远亲电鱼共有的。然而,时间比较神经结构的外观和位置在物种之间是不同的。比较了不同电鱼品种的定时系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-Comparator Neural Circuits of Gymnotiform Electric Fishes.

Weakly electric fish possess electrosensory neural systems that are dedicated to detect microsecond time differences between sensory signals. Many features of this timing system, such as electroreceptor encoding, time-locked responses, and time-comparator neural circuit, are shared by closely related as well as distantly related electric fishes. The appearance and location of the time-comparator neural structures, however, are different among species. The timing systems of different electric fish species are compared.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Science
Zoological Science 生物-动物学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
1 months
期刊介绍: Zoological Science is published by the Zoological Society of Japan and devoted to publication of original articles, reviews and editorials that cover the broad field of zoology. The journal was founded in 1984 as a result of the consolidation of Zoological Magazine (1888–1983) and Annotationes Zoologicae Japonenses (1897–1983), the former official journals of the Zoological Society of Japan. Each annual volume consists of six regular issues, one every two months.
期刊最新文献
Cloning and Expression Analysis of TGF-β Type I Receptor Gene in Hyriopsis cumingii. Long-Term Heat Tolerance and Accelerated Metamorphosis: Hot Spring Adaptations of Buergeria japonica. Microfocus X-Ray Computed Tomography of Paraplanocera oligoglena (Platyhelminthes: Polycladida) with an Evaluation of Histological Sections After Scanning. Morphological Study of Left-Right Head Asymmetry in Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae). New Invasive Leaf Gall-Inducing Wasps Ophelimus cracens sp. nov. and Epichrysocharis burwelli on Eucalypts in Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1