转基因酿酒酵母菌ERG5 Delta ERG4 Delta ERG3 Delta的耐热性改良及其在玉米乙醇生产中的应用

Peizhou Yang, Wenjing Wu, Jianchao Chen, Suwei Jiang, Zhi Zheng, Yanhong Deng, Jiuling Lu, Hu Wang, Yong Zhou, Yuyou Geng, Kanglin Wang
{"title":"转基因酿酒酵母菌ERG5 Delta ERG4 Delta ERG3 Delta的耐热性改良及其在玉米乙醇生产中的应用","authors":"Peizhou Yang,&nbsp;Wenjing Wu,&nbsp;Jianchao Chen,&nbsp;Suwei Jiang,&nbsp;Zhi Zheng,&nbsp;Yanhong Deng,&nbsp;Jiuling Lu,&nbsp;Hu Wang,&nbsp;Yong Zhou,&nbsp;Yuyou Geng,&nbsp;Kanglin Wang","doi":"10.1186/s13068-023-02312-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The thermotolerant yeast is beneficial in terms of efficiency improvement of processes and reduction of costs, while Saccharomyces cerevisiae does not efficiently grow and ferment at high-temperature conditions. The sterol composition alteration from ergosterol to fecosterol in the cell membrane of S. cerevisiae affects the thermotolerant capability.</p><p><strong>Results: </strong>In this study, S. cerevisiae ERG5, ERG4, and ERG3 were knocked out using the CRISPR-Cas9 approach to impact the gene expression involved in ergosterol synthesis. The highest thermotolerant strain was S. cerevisiae ERG5ΔERG4ΔERG3Δ, which produced 22.1 g/L ethanol at 37 °C using the initial glucose concentration of 50 g/L with an increase by 9.4% compared with the wild type (20.2 g/L). The ethanol concentration of 9.4 g/L was produced at 42 ℃, which was 2.85-fold of the wild-type strain (3.3 g/L). The molecular mechanism of engineered S. cerevisiae at the RNA level was analyzed using the transcriptomics method. The simultaneous deletion of S. cerevisiae ERG5, ERG4, and ERG3 caused 278 up-regulated genes and 1892 down-regulated genes in comparison with the wild-type strain. KEGG pathway analysis indicated that the up-regulated genes relevant to ergosterol metabolism were ERG1, ERG11, and ERG5, while the down-regulated genes were ERG9 and ERG26. S. cerevisiae ERG5ΔERG4ΔERG3Δ produced 41.6 g/L of ethanol at 37 °C with 107.7 g/L of corn liquefied glucose as carbon source.</p><p><strong>Conclusion: </strong>Simultaneous deletion of ERG5, ERG4, and ERG3 resulted in the thermotolerance improvement of S. cerevisiae ERG5ΔERG4ΔERG3Δ with cell viability improvement by 1.19-fold at 42 °C via modification of steroid metabolic pathway. S. cerevisiae ERG5ΔERG4ΔERG3Δ could effectively produce ethanol at 37 °C using corn liquefied glucose as carbon source. Therefore, S. cerevisiae ERG5ΔERG4ΔERG3Δ had potential in ethanol production at a large scale under supra-optimal temperature.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"66"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091661/pdf/","citationCount":"3","resultStr":"{\"title\":\"Thermotolerance improvement of engineered Saccharomyces cerevisiae ERG5 Delta ERG4 Delta ERG3 Delta, molecular mechanism, and its application in corn ethanol production.\",\"authors\":\"Peizhou Yang,&nbsp;Wenjing Wu,&nbsp;Jianchao Chen,&nbsp;Suwei Jiang,&nbsp;Zhi Zheng,&nbsp;Yanhong Deng,&nbsp;Jiuling Lu,&nbsp;Hu Wang,&nbsp;Yong Zhou,&nbsp;Yuyou Geng,&nbsp;Kanglin Wang\",\"doi\":\"10.1186/s13068-023-02312-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The thermotolerant yeast is beneficial in terms of efficiency improvement of processes and reduction of costs, while Saccharomyces cerevisiae does not efficiently grow and ferment at high-temperature conditions. The sterol composition alteration from ergosterol to fecosterol in the cell membrane of S. cerevisiae affects the thermotolerant capability.</p><p><strong>Results: </strong>In this study, S. cerevisiae ERG5, ERG4, and ERG3 were knocked out using the CRISPR-Cas9 approach to impact the gene expression involved in ergosterol synthesis. The highest thermotolerant strain was S. cerevisiae ERG5ΔERG4ΔERG3Δ, which produced 22.1 g/L ethanol at 37 °C using the initial glucose concentration of 50 g/L with an increase by 9.4% compared with the wild type (20.2 g/L). The ethanol concentration of 9.4 g/L was produced at 42 ℃, which was 2.85-fold of the wild-type strain (3.3 g/L). The molecular mechanism of engineered S. cerevisiae at the RNA level was analyzed using the transcriptomics method. The simultaneous deletion of S. cerevisiae ERG5, ERG4, and ERG3 caused 278 up-regulated genes and 1892 down-regulated genes in comparison with the wild-type strain. KEGG pathway analysis indicated that the up-regulated genes relevant to ergosterol metabolism were ERG1, ERG11, and ERG5, while the down-regulated genes were ERG9 and ERG26. S. cerevisiae ERG5ΔERG4ΔERG3Δ produced 41.6 g/L of ethanol at 37 °C with 107.7 g/L of corn liquefied glucose as carbon source.</p><p><strong>Conclusion: </strong>Simultaneous deletion of ERG5, ERG4, and ERG3 resulted in the thermotolerance improvement of S. cerevisiae ERG5ΔERG4ΔERG3Δ with cell viability improvement by 1.19-fold at 42 °C via modification of steroid metabolic pathway. S. cerevisiae ERG5ΔERG4ΔERG3Δ could effectively produce ethanol at 37 °C using corn liquefied glucose as carbon source. Therefore, S. cerevisiae ERG5ΔERG4ΔERG3Δ had potential in ethanol production at a large scale under supra-optimal temperature.</p>\",\"PeriodicalId\":9125,\"journal\":{\"name\":\"Biotechnology for Biofuels and Bioproducts\",\"volume\":\"16 1\",\"pages\":\"66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091661/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13068-023-02312-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-023-02312-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

背景:耐热酵母有利于提高工艺效率和降低成本,而酿酒酵母在高温条件下不能有效地生长和发酵。酿酒酵母细胞膜中的甾醇成分由麦角甾醇转变为羊甾醇,影响其耐热性。结果:本研究利用CRISPR-Cas9方法敲除酿酒葡萄球菌ERG5、ERG4和ERG3,影响麦角甾醇合成相关基因的表达。耐温性最高的菌株为酿酒酵母ERG5ΔERG4ΔERG3Δ,在37℃条件下,葡萄糖初始浓度为50 g/L,乙醇产量为22.1 g/L,比野生型(20.2 g/L)提高了9.4%。42℃下产乙醇浓度为9.4 g/L,是野生型(3.3 g/L)的2.85倍。利用转录组学方法从RNA水平分析了酿酒酵母工程化的分子机制。与野生型相比,同时缺失酿酒葡萄球菌ERG5、ERG4和ERG3导致278个基因上调,1892个基因下调。KEGG通路分析显示,麦角甾醇代谢相关基因上调为ERG1、ERG11和ERG5,下调为ERG9和ERG26。酿酒酵母ERG5ΔERG4ΔERG3Δ以107.7 g/L玉米液化葡萄糖为碳源,在37℃条件下产乙醇41.6 g/L。结论:同时缺失ERG5、ERG4和ERG3,通过改变类固醇代谢途径,使酿酒酵母ERG5ΔERG4ΔERG3Δ在42℃时的耐热性提高1.19倍,细胞活力提高1.19倍。酿酒酵母ERG5ΔERG4ΔERG3Δ以玉米液化葡萄糖为碳源,在37℃条件下可有效生产乙醇。因此,酿酒酵母ERG5ΔERG4ΔERG3Δ具有在超优温度下大规模生产乙醇的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermotolerance improvement of engineered Saccharomyces cerevisiae ERG5 Delta ERG4 Delta ERG3 Delta, molecular mechanism, and its application in corn ethanol production.

Background: The thermotolerant yeast is beneficial in terms of efficiency improvement of processes and reduction of costs, while Saccharomyces cerevisiae does not efficiently grow and ferment at high-temperature conditions. The sterol composition alteration from ergosterol to fecosterol in the cell membrane of S. cerevisiae affects the thermotolerant capability.

Results: In this study, S. cerevisiae ERG5, ERG4, and ERG3 were knocked out using the CRISPR-Cas9 approach to impact the gene expression involved in ergosterol synthesis. The highest thermotolerant strain was S. cerevisiae ERG5ΔERG4ΔERG3Δ, which produced 22.1 g/L ethanol at 37 °C using the initial glucose concentration of 50 g/L with an increase by 9.4% compared with the wild type (20.2 g/L). The ethanol concentration of 9.4 g/L was produced at 42 ℃, which was 2.85-fold of the wild-type strain (3.3 g/L). The molecular mechanism of engineered S. cerevisiae at the RNA level was analyzed using the transcriptomics method. The simultaneous deletion of S. cerevisiae ERG5, ERG4, and ERG3 caused 278 up-regulated genes and 1892 down-regulated genes in comparison with the wild-type strain. KEGG pathway analysis indicated that the up-regulated genes relevant to ergosterol metabolism were ERG1, ERG11, and ERG5, while the down-regulated genes were ERG9 and ERG26. S. cerevisiae ERG5ΔERG4ΔERG3Δ produced 41.6 g/L of ethanol at 37 °C with 107.7 g/L of corn liquefied glucose as carbon source.

Conclusion: Simultaneous deletion of ERG5, ERG4, and ERG3 resulted in the thermotolerance improvement of S. cerevisiae ERG5ΔERG4ΔERG3Δ with cell viability improvement by 1.19-fold at 42 °C via modification of steroid metabolic pathway. S. cerevisiae ERG5ΔERG4ΔERG3Δ could effectively produce ethanol at 37 °C using corn liquefied glucose as carbon source. Therefore, S. cerevisiae ERG5ΔERG4ΔERG3Δ had potential in ethanol production at a large scale under supra-optimal temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Correction: Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1