{"title":"百里香和N-乙酰半胱氨酸活性物质对对乙酰氨基酚毒性大鼠模型血液学参数及骨髓和肝脏组织病理学变化的比较影响。","authors":"Zahra Mokhtari, Mahdieh Raeeszadeh, Loghman Akradi","doi":"10.1155/2023/1714884","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen has always been at the center of attention as a non-steroidal anti-inflammatory drug, which is generally associated with the serious side effects on liver and the hematological parameters. This study aimed to compare the effect of N-acetyl cysteine (NAC) and thyme extract on rat models of acetaminophen-induced toxicity. The present experimental study was conducted on 48 Wistar rats randomized into six groups, including the control group (no treatment); the Ac group (470 mg/kg of acetaminophen); the Ac + 100Ex, Ac + 200Ex, and Ac + 400Ex groups (acetaminophen + thyme extract at doses of 100, 200, 400 mg/kg); and Ac + NA group (acetaminophen + NAC). After weighing, a blood sample was taken from heart at the end of the period. The measured parameters were hematological, liver biochemical, and oxidative stress profiles. A part of the liver tissue was also fixed for the pathological examinations. The bone marrow was aspirated to check for cellular changes as well. The lowest mean of the final weight and liver weight to body weight ratio was observed in the Ac group. Weight loss was compensated in Ac + NA and Ac + 200Ex groups (<i>P</i> = 0.035). White blood cell (WBC), red blood cell (RBC), Hemoglobin (Hgb), and Hematocrit (HCT) in Ac and Ac + 400Ex groups showed significant differences from those of the other test groups (<i>P</i> < 0.001). Aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) enzymes in Ac + 200Ex and Ac + NA groups showed a significant decrease compared to those of the other treatment groups (<i>P</i> = 0.043). Total antioxidant capacity (TAC) and glutathione peroxidase (GPx) had the lowest levels in Ac and Ac + 400Ex groups, while malondialdehyde (MDA) had the highest content. In this regard, the liver histopathological indices (necrosis, hyperemia, and hemorrhage) in the Ac + 200Ex and Ac + NA groups reached their lowest grades in the treatment groups. The mean number of erythroid and myeloid cells in the Ac group reached the lowest (17.40 ± 3.48). The microscopic appearance of the bone marrow cells was different from normocytosis in the control group to hypocytosis in the Ac and Ac + 400Ex groups. Thymol, as an effective ingredient in thyme extract at a dose of 200 mg/kg compared to NAC, had a unique effect on reducing bone marrow and liver cell-tissue changes due to the acetaminophen toxicity.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"1714884"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Effect of the Active Substance of Thyme with N-Acetyl Cysteine on Hematological Parameters and Histopathological Changes of Bone Marrow and Liver in Rat Models of Acetaminophen Toxicity.\",\"authors\":\"Zahra Mokhtari, Mahdieh Raeeszadeh, Loghman Akradi\",\"doi\":\"10.1155/2023/1714884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetaminophen has always been at the center of attention as a non-steroidal anti-inflammatory drug, which is generally associated with the serious side effects on liver and the hematological parameters. This study aimed to compare the effect of N-acetyl cysteine (NAC) and thyme extract on rat models of acetaminophen-induced toxicity. The present experimental study was conducted on 48 Wistar rats randomized into six groups, including the control group (no treatment); the Ac group (470 mg/kg of acetaminophen); the Ac + 100Ex, Ac + 200Ex, and Ac + 400Ex groups (acetaminophen + thyme extract at doses of 100, 200, 400 mg/kg); and Ac + NA group (acetaminophen + NAC). After weighing, a blood sample was taken from heart at the end of the period. The measured parameters were hematological, liver biochemical, and oxidative stress profiles. A part of the liver tissue was also fixed for the pathological examinations. The bone marrow was aspirated to check for cellular changes as well. The lowest mean of the final weight and liver weight to body weight ratio was observed in the Ac group. Weight loss was compensated in Ac + NA and Ac + 200Ex groups (<i>P</i> = 0.035). White blood cell (WBC), red blood cell (RBC), Hemoglobin (Hgb), and Hematocrit (HCT) in Ac and Ac + 400Ex groups showed significant differences from those of the other test groups (<i>P</i> < 0.001). Aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) enzymes in Ac + 200Ex and Ac + NA groups showed a significant decrease compared to those of the other treatment groups (<i>P</i> = 0.043). Total antioxidant capacity (TAC) and glutathione peroxidase (GPx) had the lowest levels in Ac and Ac + 400Ex groups, while malondialdehyde (MDA) had the highest content. In this regard, the liver histopathological indices (necrosis, hyperemia, and hemorrhage) in the Ac + 200Ex and Ac + NA groups reached their lowest grades in the treatment groups. The mean number of erythroid and myeloid cells in the Ac group reached the lowest (17.40 ± 3.48). The microscopic appearance of the bone marrow cells was different from normocytosis in the control group to hypocytosis in the Ac and Ac + 400Ex groups. Thymol, as an effective ingredient in thyme extract at a dose of 200 mg/kg compared to NAC, had a unique effect on reducing bone marrow and liver cell-tissue changes due to the acetaminophen toxicity.</p>\",\"PeriodicalId\":49326,\"journal\":{\"name\":\"Analytical Cellular Pathology\",\"volume\":\"2023 \",\"pages\":\"1714884\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1714884\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/1714884","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Comparative Effect of the Active Substance of Thyme with N-Acetyl Cysteine on Hematological Parameters and Histopathological Changes of Bone Marrow and Liver in Rat Models of Acetaminophen Toxicity.
Acetaminophen has always been at the center of attention as a non-steroidal anti-inflammatory drug, which is generally associated with the serious side effects on liver and the hematological parameters. This study aimed to compare the effect of N-acetyl cysteine (NAC) and thyme extract on rat models of acetaminophen-induced toxicity. The present experimental study was conducted on 48 Wistar rats randomized into six groups, including the control group (no treatment); the Ac group (470 mg/kg of acetaminophen); the Ac + 100Ex, Ac + 200Ex, and Ac + 400Ex groups (acetaminophen + thyme extract at doses of 100, 200, 400 mg/kg); and Ac + NA group (acetaminophen + NAC). After weighing, a blood sample was taken from heart at the end of the period. The measured parameters were hematological, liver biochemical, and oxidative stress profiles. A part of the liver tissue was also fixed for the pathological examinations. The bone marrow was aspirated to check for cellular changes as well. The lowest mean of the final weight and liver weight to body weight ratio was observed in the Ac group. Weight loss was compensated in Ac + NA and Ac + 200Ex groups (P = 0.035). White blood cell (WBC), red blood cell (RBC), Hemoglobin (Hgb), and Hematocrit (HCT) in Ac and Ac + 400Ex groups showed significant differences from those of the other test groups (P < 0.001). Aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) enzymes in Ac + 200Ex and Ac + NA groups showed a significant decrease compared to those of the other treatment groups (P = 0.043). Total antioxidant capacity (TAC) and glutathione peroxidase (GPx) had the lowest levels in Ac and Ac + 400Ex groups, while malondialdehyde (MDA) had the highest content. In this regard, the liver histopathological indices (necrosis, hyperemia, and hemorrhage) in the Ac + 200Ex and Ac + NA groups reached their lowest grades in the treatment groups. The mean number of erythroid and myeloid cells in the Ac group reached the lowest (17.40 ± 3.48). The microscopic appearance of the bone marrow cells was different from normocytosis in the control group to hypocytosis in the Ac and Ac + 400Ex groups. Thymol, as an effective ingredient in thyme extract at a dose of 200 mg/kg compared to NAC, had a unique effect on reducing bone marrow and liver cell-tissue changes due to the acetaminophen toxicity.
期刊介绍:
Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.