Megan C Neville, Alexander Eastwood, Aaron M Allen, Ammerins de Haan, Tetsuya Nojima, Stephen F Goodwin
{"title":"黑腹果蝇P1无果启动子突变体的产生及特性研究。","authors":"Megan C Neville, Alexander Eastwood, Aaron M Allen, Ammerins de Haan, Tetsuya Nojima, Stephen F Goodwin","doi":"10.1080/01677063.2021.1931179","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of mutations in the gene <i>fruitless</i> (<i>fru</i>) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly <i>Drosophila melanogaster</i>. <i>D. melanogaster</i> males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in <i>fru</i> have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The <i>fru</i> genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the <i>fru</i> gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of <i>fru</i> P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of <i>fru</i> P1-derived function in <i>D. melanogaster</i>. Our <i>fru<sup>ΔP1</sup></i> mutant will be useful for future studies of <i>fru</i> P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant <i>fru</i> alleles.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 3","pages":"285-294"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1931179","citationCount":"1","resultStr":"{\"title\":\"Generation and characterization of <i>fruitless</i> P1 promoter mutant in <i>Drosophila melanogaster</i>.\",\"authors\":\"Megan C Neville, Alexander Eastwood, Aaron M Allen, Ammerins de Haan, Tetsuya Nojima, Stephen F Goodwin\",\"doi\":\"10.1080/01677063.2021.1931179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The identification of mutations in the gene <i>fruitless</i> (<i>fru</i>) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly <i>Drosophila melanogaster</i>. <i>D. melanogaster</i> males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in <i>fru</i> have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The <i>fru</i> genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the <i>fru</i> gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of <i>fru</i> P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of <i>fru</i> P1-derived function in <i>D. melanogaster</i>. Our <i>fru<sup>ΔP1</sup></i> mutant will be useful for future studies of <i>fru</i> P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant <i>fru</i> alleles.</p>\",\"PeriodicalId\":16491,\"journal\":{\"name\":\"Journal of neurogenetics\",\"volume\":\"35 3\",\"pages\":\"285-294\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01677063.2021.1931179\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01677063.2021.1931179\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2021.1931179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Generation and characterization of fruitless P1 promoter mutant in Drosophila melanogaster.
The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms