Ryan G Morrison, Sophie A Halpern, Eamonn J Brace, Arielle J Hall, Dip V Patel, Jonathan Y Yuh, Nils V Brolis
{"title":"面向医护人员的开源超声波培训师:随机对照试验。","authors":"Ryan G Morrison, Sophie A Halpern, Eamonn J Brace, Arielle J Hall, Dip V Patel, Jonathan Y Yuh, Nils V Brolis","doi":"10.1097/SIH.0000000000000697","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This technical report describes the development of a high-fidelity, open-source ultrasound trainer and showcases its abilities through a proof-of-concept, pilot randomized control trial. The open-source ultrasound trainer (OSUT) aims to enhance anatomical visualization during ultrasound education. The OSUT can attach to any ultrasound transducer, uses minimal hardware, and is able to be used during live patient ultrasound examinations.</p><p><strong>Methods: </strong>After viewing a standardized training video lecture, 24 incoming first-year medical students with no prior ultrasound experience were randomized into a control group given an ultrasound system or an intervention group given the OSUT in addition to an ultrasound system. Both groups were tasked with localizing the thyroid, abdominal aorta, and right kidney on a patient. Performance outcomes were structure localization time, ultrasound image accuracy, and preactivity and postactivity participant confidence.</p><p><strong>Results: </strong>The OSUT decreased right kidney localization time (Kruskal-Wallis, P < 0.001), increased sonographer right kidney accuracy ratings (Mann-Whitney U , U = 10.5, P < 0.05), and increased confidence in structure identification (Mann-Whitney U , U = 37, P = 0.045) and overall ultrasound ability (Wilcoxon signed-rank test, P = 0.007). There was no significant change in localization time, accuracy ratings, or participant confidence for locating the thyroid and abdominal aorta.</p><p><strong>Conclusions: </strong>A high-fidelity, open-source ultrasound trainer was developed to aid healthcare professionals in learning diagnostic ultrasound. The study demonstrated the potential beneficial effects of the OSUT in localizing the right kidney, showcasing its adaptability and accessibility for ultrasound education for certain anatomical structures.</p>","PeriodicalId":49517,"journal":{"name":"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare","volume":" ","pages":"113-121"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-Source Ultrasound Trainer for Healthcare Professionals: A Pilot Randomized Control Trial.\",\"authors\":\"Ryan G Morrison, Sophie A Halpern, Eamonn J Brace, Arielle J Hall, Dip V Patel, Jonathan Y Yuh, Nils V Brolis\",\"doi\":\"10.1097/SIH.0000000000000697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This technical report describes the development of a high-fidelity, open-source ultrasound trainer and showcases its abilities through a proof-of-concept, pilot randomized control trial. The open-source ultrasound trainer (OSUT) aims to enhance anatomical visualization during ultrasound education. The OSUT can attach to any ultrasound transducer, uses minimal hardware, and is able to be used during live patient ultrasound examinations.</p><p><strong>Methods: </strong>After viewing a standardized training video lecture, 24 incoming first-year medical students with no prior ultrasound experience were randomized into a control group given an ultrasound system or an intervention group given the OSUT in addition to an ultrasound system. Both groups were tasked with localizing the thyroid, abdominal aorta, and right kidney on a patient. Performance outcomes were structure localization time, ultrasound image accuracy, and preactivity and postactivity participant confidence.</p><p><strong>Results: </strong>The OSUT decreased right kidney localization time (Kruskal-Wallis, P < 0.001), increased sonographer right kidney accuracy ratings (Mann-Whitney U , U = 10.5, P < 0.05), and increased confidence in structure identification (Mann-Whitney U , U = 37, P = 0.045) and overall ultrasound ability (Wilcoxon signed-rank test, P = 0.007). There was no significant change in localization time, accuracy ratings, or participant confidence for locating the thyroid and abdominal aorta.</p><p><strong>Conclusions: </strong>A high-fidelity, open-source ultrasound trainer was developed to aid healthcare professionals in learning diagnostic ultrasound. The study demonstrated the potential beneficial effects of the OSUT in localizing the right kidney, showcasing its adaptability and accessibility for ultrasound education for certain anatomical structures.</p>\",\"PeriodicalId\":49517,\"journal\":{\"name\":\"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare\",\"volume\":\" \",\"pages\":\"113-121\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SIH.0000000000000697\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SIH.0000000000000697","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Open-Source Ultrasound Trainer for Healthcare Professionals: A Pilot Randomized Control Trial.
Introduction: This technical report describes the development of a high-fidelity, open-source ultrasound trainer and showcases its abilities through a proof-of-concept, pilot randomized control trial. The open-source ultrasound trainer (OSUT) aims to enhance anatomical visualization during ultrasound education. The OSUT can attach to any ultrasound transducer, uses minimal hardware, and is able to be used during live patient ultrasound examinations.
Methods: After viewing a standardized training video lecture, 24 incoming first-year medical students with no prior ultrasound experience were randomized into a control group given an ultrasound system or an intervention group given the OSUT in addition to an ultrasound system. Both groups were tasked with localizing the thyroid, abdominal aorta, and right kidney on a patient. Performance outcomes were structure localization time, ultrasound image accuracy, and preactivity and postactivity participant confidence.
Results: The OSUT decreased right kidney localization time (Kruskal-Wallis, P < 0.001), increased sonographer right kidney accuracy ratings (Mann-Whitney U , U = 10.5, P < 0.05), and increased confidence in structure identification (Mann-Whitney U , U = 37, P = 0.045) and overall ultrasound ability (Wilcoxon signed-rank test, P = 0.007). There was no significant change in localization time, accuracy ratings, or participant confidence for locating the thyroid and abdominal aorta.
Conclusions: A high-fidelity, open-source ultrasound trainer was developed to aid healthcare professionals in learning diagnostic ultrasound. The study demonstrated the potential beneficial effects of the OSUT in localizing the right kidney, showcasing its adaptability and accessibility for ultrasound education for certain anatomical structures.
期刊介绍:
Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare is a multidisciplinary publication encompassing all areas of applications and research in healthcare simulation technology. The journal is relevant to a broad range of clinical and biomedical specialties, and publishes original basic, clinical, and translational research on these topics and more: Safety and quality-oriented training programs; Development of educational and competency assessment standards; Reports of experience in the use of simulation technology; Virtual reality; Epidemiologic modeling; Molecular, pharmacologic, and disease modeling.