{"title":"超分辨率显微镜:一种革新肾小球疾病研究和诊断的技术。","authors":"Florian Siegerist, Vedran Drenic, Thor-Magnus Koppe, Nihal Telli, Nicole Endlich","doi":"10.1159/000528713","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function.</p><p><strong>Summary: </strong>Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies.</p><p><strong>Key messages: </strong>Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.</p>","PeriodicalId":73177,"journal":{"name":"Glomerular diseases","volume":"3 1","pages":"19-28"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936760/pdf/","citationCount":"3","resultStr":"{\"title\":\"Super-Resolution Microscopy: A Technique to Revolutionize Research and Diagnosis of Glomerulopathies.\",\"authors\":\"Florian Siegerist, Vedran Drenic, Thor-Magnus Koppe, Nihal Telli, Nicole Endlich\",\"doi\":\"10.1159/000528713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function.</p><p><strong>Summary: </strong>Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies.</p><p><strong>Key messages: </strong>Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.</p>\",\"PeriodicalId\":73177,\"journal\":{\"name\":\"Glomerular diseases\",\"volume\":\"3 1\",\"pages\":\"19-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936760/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glomerular diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000528713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glomerular diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000528713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Super-Resolution Microscopy: A Technique to Revolutionize Research and Diagnosis of Glomerulopathies.
Background: For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function.
Summary: Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies.
Key messages: Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.