{"title":"产卵种群年龄结构的长期变化影响巴伦支海鳕鱼的气候招募联系","authors":"Geir Ottersen, Rebecca E. Holt","doi":"10.1111/fog.12605","DOIUrl":null,"url":null,"abstract":"<p>Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922–2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.</p>","PeriodicalId":51054,"journal":{"name":"Fisheries Oceanography","volume":"32 1","pages":"91-105"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/e5/FOG-32-91.PMC10087206.pdf","citationCount":"2","resultStr":"{\"title\":\"Long-term variability in spawning stock age structure influences climate–recruitment link for Barents Sea cod\",\"authors\":\"Geir Ottersen, Rebecca E. Holt\",\"doi\":\"10.1111/fog.12605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922–2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.</p>\",\"PeriodicalId\":51054,\"journal\":{\"name\":\"Fisheries Oceanography\",\"volume\":\"32 1\",\"pages\":\"91-105\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/e5/FOG-32-91.PMC10087206.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fisheries Oceanography\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/fog.12605\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fisheries Oceanography","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fog.12605","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Long-term variability in spawning stock age structure influences climate–recruitment link for Barents Sea cod
Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922–2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.
期刊介绍:
The international journal of the Japanese Society for Fisheries Oceanography, Fisheries Oceanography is designed to present a forum for the exchange of information amongst fisheries scientists worldwide.
Fisheries Oceanography:
presents original research articles relating the production and dynamics of fish populations to the marine environment
examines entire food chains - not just single species
identifies mechanisms controlling abundance
explores factors affecting the recruitment and abundance of fish species and all higher marine tropic levels