Jiaoli Yao, Qingfeng Kong, Yin Wang, Yanting Zhang, Qinxue Wang
{"title":"克虏伯样因子4在变应性鼻炎小鼠鼻黏膜上皮细胞焦亡中的作用机制。","authors":"Jiaoli Yao, Qingfeng Kong, Yin Wang, Yanting Zhang, Qinxue Wang","doi":"10.1177/19458924221148568","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Allergic rhinitis (AR) is a chronic nasal inflammation, characterized by nasal epithelial dysfunction. Gene therapy targeting transcription factors is a promising strategy for quenching allergic inflammation, including AR.</p><p><strong>Objective: </strong>This study sought to probe the mechanism of Kruppel-like factor 4 (KLF4) in pyroptosis of nasal mucosal epithelial cells (NEpCs) in AR mice and provide targets for AR treatment.</p><p><strong>Methods: </strong>AR mouse models were established using sensitization with ovalbumin, followed by injection with short hairpin RNA KLF4 (sh-KLF4). AR symptoms were assessed by the times of sneezing and nose rubbing, hematoxylin-eosin, and periodic acid-Schiff staining. Levels of KLF4, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and N-terminal domain (GSDMD-N) in nasal mucosal tissues were determined by Western blot assay, and levels of interleukin (IL)-1β and IL-18 in nasal lavage fluid were determined by enzyme-linked immunosorbent assay. The binding of KLF4 to the NLRP3 promoter was verified using chromatin immunoprecipitation and dual-luciferase assays. The functional rescue experiment was performed with oe-NLRP3 and sh-KLF4 in AR mice.</p><p><strong>Results: </strong>KLF4 was upregulated in nasal mucosal tissues of AR mice. KLF4 inhibition reduced the times of sneezing and nose rubbing, inflammatory cell infiltration, and goblet cell hyperplasia in nasal mucosal tissues, and levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, and IL-18. KLF4 was enriched on the NLRP3 promoter and improved NLRP3 expression. NLRP3 overexpression reversed the inhibition of sh-KLF4 on pyroptosis of NEpCs in AR mice.</p><p><strong>Conclusion: </strong>KLF4 bound to the NLRP3 promoter and promoted pyroptosis of NEpCs in AR mice via activating NLRP3.</p>","PeriodicalId":7650,"journal":{"name":"American Journal of Rhinology & Allergy","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanism of Kruppel-Like Factor 4 in Pyroptosis of Nasal Mucosal Epithelial Cells in Mice With Allergic Rhinitis.\",\"authors\":\"Jiaoli Yao, Qingfeng Kong, Yin Wang, Yanting Zhang, Qinxue Wang\",\"doi\":\"10.1177/19458924221148568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Allergic rhinitis (AR) is a chronic nasal inflammation, characterized by nasal epithelial dysfunction. Gene therapy targeting transcription factors is a promising strategy for quenching allergic inflammation, including AR.</p><p><strong>Objective: </strong>This study sought to probe the mechanism of Kruppel-like factor 4 (KLF4) in pyroptosis of nasal mucosal epithelial cells (NEpCs) in AR mice and provide targets for AR treatment.</p><p><strong>Methods: </strong>AR mouse models were established using sensitization with ovalbumin, followed by injection with short hairpin RNA KLF4 (sh-KLF4). AR symptoms were assessed by the times of sneezing and nose rubbing, hematoxylin-eosin, and periodic acid-Schiff staining. Levels of KLF4, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and N-terminal domain (GSDMD-N) in nasal mucosal tissues were determined by Western blot assay, and levels of interleukin (IL)-1β and IL-18 in nasal lavage fluid were determined by enzyme-linked immunosorbent assay. The binding of KLF4 to the NLRP3 promoter was verified using chromatin immunoprecipitation and dual-luciferase assays. The functional rescue experiment was performed with oe-NLRP3 and sh-KLF4 in AR mice.</p><p><strong>Results: </strong>KLF4 was upregulated in nasal mucosal tissues of AR mice. KLF4 inhibition reduced the times of sneezing and nose rubbing, inflammatory cell infiltration, and goblet cell hyperplasia in nasal mucosal tissues, and levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, and IL-18. KLF4 was enriched on the NLRP3 promoter and improved NLRP3 expression. NLRP3 overexpression reversed the inhibition of sh-KLF4 on pyroptosis of NEpCs in AR mice.</p><p><strong>Conclusion: </strong>KLF4 bound to the NLRP3 promoter and promoted pyroptosis of NEpCs in AR mice via activating NLRP3.</p>\",\"PeriodicalId\":7650,\"journal\":{\"name\":\"American Journal of Rhinology & Allergy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Rhinology & Allergy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19458924221148568\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Rhinology & Allergy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19458924221148568","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Mechanism of Kruppel-Like Factor 4 in Pyroptosis of Nasal Mucosal Epithelial Cells in Mice With Allergic Rhinitis.
Background: Allergic rhinitis (AR) is a chronic nasal inflammation, characterized by nasal epithelial dysfunction. Gene therapy targeting transcription factors is a promising strategy for quenching allergic inflammation, including AR.
Objective: This study sought to probe the mechanism of Kruppel-like factor 4 (KLF4) in pyroptosis of nasal mucosal epithelial cells (NEpCs) in AR mice and provide targets for AR treatment.
Methods: AR mouse models were established using sensitization with ovalbumin, followed by injection with short hairpin RNA KLF4 (sh-KLF4). AR symptoms were assessed by the times of sneezing and nose rubbing, hematoxylin-eosin, and periodic acid-Schiff staining. Levels of KLF4, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and N-terminal domain (GSDMD-N) in nasal mucosal tissues were determined by Western blot assay, and levels of interleukin (IL)-1β and IL-18 in nasal lavage fluid were determined by enzyme-linked immunosorbent assay. The binding of KLF4 to the NLRP3 promoter was verified using chromatin immunoprecipitation and dual-luciferase assays. The functional rescue experiment was performed with oe-NLRP3 and sh-KLF4 in AR mice.
Results: KLF4 was upregulated in nasal mucosal tissues of AR mice. KLF4 inhibition reduced the times of sneezing and nose rubbing, inflammatory cell infiltration, and goblet cell hyperplasia in nasal mucosal tissues, and levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, and IL-18. KLF4 was enriched on the NLRP3 promoter and improved NLRP3 expression. NLRP3 overexpression reversed the inhibition of sh-KLF4 on pyroptosis of NEpCs in AR mice.
Conclusion: KLF4 bound to the NLRP3 promoter and promoted pyroptosis of NEpCs in AR mice via activating NLRP3.
期刊介绍:
The American Journal of Rhinology & Allergy is a peer-reviewed, scientific publication committed to expanding knowledge and publishing the best clinical and basic research within the fields of Rhinology & Allergy. Its focus is to publish information which contributes to improved quality of care for patients with nasal and sinus disorders. Its primary readership consists of otolaryngologists, allergists, and plastic surgeons. Published material includes peer-reviewed original research, clinical trials, and review articles.