{"title":"具有商业价值的中上层和底栖鱼类纤维性微塑料和天然微纤维的研究和特性。","authors":"Serena Santonicola, Michela Volgare, Emilia Di Pace, Raffaelina Mercogliano, Mariacristina Cocca, Gennaro Raimo, Giampaolo Colavita","doi":"10.4081/ijfs.2023.11032","DOIUrl":null,"url":null,"abstract":"<p><p>The ingestion of synthetic microfibers, the most prevalent type of microplastics in marine environments, and natural fibers was assessed in <i>Engraulis engrasicolus</i> and <i>Mullus barbatus</i>, two commercially important fish species in the Mediterranean Sea. Microfibers were isolated from the fish gastrointestinal tract using a 10% potassium hydroxide solution. For the microfiber characterization, the evaluation of specific morphological features using a light microscope, coupled with the Fourier-transform infrared (FTIR) analysis of a subsample of isolated particles, was applied. The preliminary results showed the occurrence of microfibers in 53 and 60% of European anchovy and Red mullet, respectively. A mean of 6.9 microfibers/individual was detected in anchovies, while on average Red mullet samples contained 9.2 microfibers/individual. The most common colors of fibers in both species were black, blue, and transparent. Visual characterization of fibers allowed the classification of 40% of the items as synthetic microfibers. FTIR spectroscopy confirmed the visual classification by fiber morphology. Microfibers were made of different typologies of polymers, represented by cellulose, cotton, and polyester. These findings confirm as the wide distribution of fibrous microplastics, and natural microfibers may impact both pelagic and deep-sea trophic webs. Despite the presence of microfibers in fish species poses a potential risk to human health, the literature is scarce regarding studies on the uptake by commercial marine fish mostly due to methodological issues. The visual characterization, corroborated by spectroscopic techniques, may be useful to differentiate synthetic and natural fibers, representing a fast and easy method to assess fibrous microplastic pollution in commercially important fish species.</p>","PeriodicalId":14508,"journal":{"name":"Italian Journal of Food Safety","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/44/1c/ijfs-12-1-11032.PMC10102967.pdf","citationCount":"1","resultStr":"{\"title\":\"Research and characterization of fibrous microplastics and natural microfibers in pelagic and benthic fish species of commercial interest.\",\"authors\":\"Serena Santonicola, Michela Volgare, Emilia Di Pace, Raffaelina Mercogliano, Mariacristina Cocca, Gennaro Raimo, Giampaolo Colavita\",\"doi\":\"10.4081/ijfs.2023.11032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ingestion of synthetic microfibers, the most prevalent type of microplastics in marine environments, and natural fibers was assessed in <i>Engraulis engrasicolus</i> and <i>Mullus barbatus</i>, two commercially important fish species in the Mediterranean Sea. Microfibers were isolated from the fish gastrointestinal tract using a 10% potassium hydroxide solution. For the microfiber characterization, the evaluation of specific morphological features using a light microscope, coupled with the Fourier-transform infrared (FTIR) analysis of a subsample of isolated particles, was applied. The preliminary results showed the occurrence of microfibers in 53 and 60% of European anchovy and Red mullet, respectively. A mean of 6.9 microfibers/individual was detected in anchovies, while on average Red mullet samples contained 9.2 microfibers/individual. The most common colors of fibers in both species were black, blue, and transparent. Visual characterization of fibers allowed the classification of 40% of the items as synthetic microfibers. FTIR spectroscopy confirmed the visual classification by fiber morphology. Microfibers were made of different typologies of polymers, represented by cellulose, cotton, and polyester. These findings confirm as the wide distribution of fibrous microplastics, and natural microfibers may impact both pelagic and deep-sea trophic webs. Despite the presence of microfibers in fish species poses a potential risk to human health, the literature is scarce regarding studies on the uptake by commercial marine fish mostly due to methodological issues. The visual characterization, corroborated by spectroscopic techniques, may be useful to differentiate synthetic and natural fibers, representing a fast and easy method to assess fibrous microplastic pollution in commercially important fish species.</p>\",\"PeriodicalId\":14508,\"journal\":{\"name\":\"Italian Journal of Food Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/44/1c/ijfs-12-1-11032.PMC10102967.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Food Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/ijfs.2023.11032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ijfs.2023.11032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research and characterization of fibrous microplastics and natural microfibers in pelagic and benthic fish species of commercial interest.
The ingestion of synthetic microfibers, the most prevalent type of microplastics in marine environments, and natural fibers was assessed in Engraulis engrasicolus and Mullus barbatus, two commercially important fish species in the Mediterranean Sea. Microfibers were isolated from the fish gastrointestinal tract using a 10% potassium hydroxide solution. For the microfiber characterization, the evaluation of specific morphological features using a light microscope, coupled with the Fourier-transform infrared (FTIR) analysis of a subsample of isolated particles, was applied. The preliminary results showed the occurrence of microfibers in 53 and 60% of European anchovy and Red mullet, respectively. A mean of 6.9 microfibers/individual was detected in anchovies, while on average Red mullet samples contained 9.2 microfibers/individual. The most common colors of fibers in both species were black, blue, and transparent. Visual characterization of fibers allowed the classification of 40% of the items as synthetic microfibers. FTIR spectroscopy confirmed the visual classification by fiber morphology. Microfibers were made of different typologies of polymers, represented by cellulose, cotton, and polyester. These findings confirm as the wide distribution of fibrous microplastics, and natural microfibers may impact both pelagic and deep-sea trophic webs. Despite the presence of microfibers in fish species poses a potential risk to human health, the literature is scarce regarding studies on the uptake by commercial marine fish mostly due to methodological issues. The visual characterization, corroborated by spectroscopic techniques, may be useful to differentiate synthetic and natural fibers, representing a fast and easy method to assess fibrous microplastic pollution in commercially important fish species.
期刊介绍:
The Journal of Food Safety (IJFS) is the official journal of the Italian Association of Veterinary Food Hygienists (AIVI). The Journal addresses veterinary food hygienists, specialists in the food industry and experts offering technical support and advice on food of animal origin. The Journal of Food Safety publishes original research papers concerning food safety and hygiene, animal health, zoonoses and food safety, food safety economics. Reviews, editorials, technical reports, brief notes, conference proceedings, letters to the Editor, book reviews are also welcome. Every article published in the Journal will be peer-reviewed by experts in the field and selected by members of the editorial board. The publication of manuscripts is subject to the approval of the Editor who has knowledge of the field discussed in the manuscript in accordance with the principles of Peer Review; referees will be selected from the Editorial Board or among qualified scientists of the international scientific community. Articles must be written in English and must adhere to the guidelines and details contained in the Instructions to Authors.