纳米碳在肿瘤学中的作用综述。

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2023-03-01 DOI:10.1002/wnan.1845
Meghan M Watt, Parikshit Moitra, Zach Sheffield, Fatemeh Ostadhossein, Elizabeth A Maxwell, Dipanjan Pan
{"title":"纳米碳在肿瘤学中的作用综述。","authors":"Meghan M Watt,&nbsp;Parikshit Moitra,&nbsp;Zach Sheffield,&nbsp;Fatemeh Ostadhossein,&nbsp;Elizabeth A Maxwell,&nbsp;Dipanjan Pan","doi":"10.1002/wnan.1845","DOIUrl":null,"url":null,"abstract":"<p><p>The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 2","pages":"e1845"},"PeriodicalIF":6.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A narrative review on the role of carbon nanoparticles in oncology.\",\"authors\":\"Meghan M Watt,&nbsp;Parikshit Moitra,&nbsp;Zach Sheffield,&nbsp;Fatemeh Ostadhossein,&nbsp;Elizabeth A Maxwell,&nbsp;Dipanjan Pan\",\"doi\":\"10.1002/wnan.1845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"15 2\",\"pages\":\"e1845\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1845\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1845","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

摘要

淋巴系统是大多数肿瘤的第一个转移部位,也是癌症治疗失败的常见原因。淋巴系统的解剖特性使得化疗药物难以达到治疗浓度,同时避免全身毒性。碳纳米颗粒为识别和运输治疗分子提供了一种很有前途的选择。淋巴管的直径比血管的直径大,这使得碳纳米颗粒在皮下注射后可以选择性地进入淋巴系统。在瘤内注射后,碳纳米颗粒将肿瘤引流淋巴结染成黑色,这使得它们在前哨淋巴结定位中很有用。载药碳纳米颗粒允许更高浓度的化疗药物在区域淋巴结积聚,同时减少血浆药物积聚。使用碳纳米颗粒进行化疗可以降低死亡率,减少重要器官的组织病理学改变,降低肝细胞酶的血清浓度。本文将重点介绍碳纳米颗粒靶向淋巴的能力,以及它们在前哨淋巴结定位和肿瘤治疗方案中的当前和潜在应用。本文分类为:植入材料和外科技术>纳米尺度工具和外科技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A narrative review on the role of carbon nanoparticles in oncology.

The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
期刊最新文献
Design and synthesis of bioinspired nanomaterials for biomedical application. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1