{"title":"螺旋调强和体积调弧全脑放射治疗保头皮的剂量学研究。","authors":"Ryosuke Shirata, Tatsuya Inoue, Satoru Sugimoto, Anneyuko I Saito, Motoko Omura, Yumiko Minagawa, Keisuke Sasai","doi":"10.1259/bjro.20220037","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Intensity-modulated radiotherapy (IMRT) is a well-established radiotherapy technique for delivering radiation to cancer with high conformity while sparing the surrounding normal tissue. Two main purposes of this study are: (1) to investigate dose calculation accuracy of helical IMRT (HIMRT) and volumetric-modulated arc therapy (VMAT) on surface region and (2) to evaluate the dosimetric efficacy of HIMRT and VMAT for scalp-sparing in whole brain radiotherapy (WBRT).</p><p><strong>Methods: </strong>First, using a radiochromic film and water-equivalent phantom with three types of boluses (1, 3, 5 mm), calculation/measurement dose agreement at the surface region in the VMAT and HIMRT plans were examined. Then, HIMRT, 6MV-VMAT and 10MV-VMAT with scalp-sparing, and two conventional three-dimensional conformal radiotherapy plans (6MV-3DCRT and 10MV-3DCRT; as reference data) were created for 30 patients with brain metastasis (30 Gy/10 fractions). The mean dose to the scalp and the scalp volume receiving 24 and 30 Gy were compared.</p><p><strong>Results: </strong>The percentage dose differences between the calculation and measurement were within 7%, except for the HIMRT plan at a depth of 1 mm. The averaged mean scalp doses [Gy], V24Gy [%], and V30Gy [%] (1SD) for 6MV-3DCRT, 10MV-3DCRT, HIMRT, 6MV-VMAT, and 10MV-VMAT were [26.6 (1.1), 86.4 (7.3), 13.2 (4.2)], [25.4 (1.0), 77.8 (7.5), 13.2 (4.2)], [23.2 (1.5), 42.8 (19.2), 0.2 (0.5)], [23.6 (1.6), 47.5 (17.9), 1.2 (1.8)], and [22.7 (1.7), 36.4 (17.6), 0.7 (1.1)], respectively.</p><p><strong>Conclusion: </strong>Regarding the dose parameters, HIMRT achieved a lower scalp dose compared with 6MV-VMAT. However, the highest ability to reduce the mean scalp dose was showed in 10MV-VMAT.</p><p><strong>Advances in knowledge: </strong>Scalp-sparing WBRT using HIMRT or VMAT may prevent radiation-induced alopecia in patients with BM.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"5 1","pages":"20220037"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dosimetric investigation of whole-brain radiotherapy with helical intensity modulated radiation therapy and volumetric modulated arc therapy for scalp sparing.\",\"authors\":\"Ryosuke Shirata, Tatsuya Inoue, Satoru Sugimoto, Anneyuko I Saito, Motoko Omura, Yumiko Minagawa, Keisuke Sasai\",\"doi\":\"10.1259/bjro.20220037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Intensity-modulated radiotherapy (IMRT) is a well-established radiotherapy technique for delivering radiation to cancer with high conformity while sparing the surrounding normal tissue. Two main purposes of this study are: (1) to investigate dose calculation accuracy of helical IMRT (HIMRT) and volumetric-modulated arc therapy (VMAT) on surface region and (2) to evaluate the dosimetric efficacy of HIMRT and VMAT for scalp-sparing in whole brain radiotherapy (WBRT).</p><p><strong>Methods: </strong>First, using a radiochromic film and water-equivalent phantom with three types of boluses (1, 3, 5 mm), calculation/measurement dose agreement at the surface region in the VMAT and HIMRT plans were examined. Then, HIMRT, 6MV-VMAT and 10MV-VMAT with scalp-sparing, and two conventional three-dimensional conformal radiotherapy plans (6MV-3DCRT and 10MV-3DCRT; as reference data) were created for 30 patients with brain metastasis (30 Gy/10 fractions). The mean dose to the scalp and the scalp volume receiving 24 and 30 Gy were compared.</p><p><strong>Results: </strong>The percentage dose differences between the calculation and measurement were within 7%, except for the HIMRT plan at a depth of 1 mm. The averaged mean scalp doses [Gy], V24Gy [%], and V30Gy [%] (1SD) for 6MV-3DCRT, 10MV-3DCRT, HIMRT, 6MV-VMAT, and 10MV-VMAT were [26.6 (1.1), 86.4 (7.3), 13.2 (4.2)], [25.4 (1.0), 77.8 (7.5), 13.2 (4.2)], [23.2 (1.5), 42.8 (19.2), 0.2 (0.5)], [23.6 (1.6), 47.5 (17.9), 1.2 (1.8)], and [22.7 (1.7), 36.4 (17.6), 0.7 (1.1)], respectively.</p><p><strong>Conclusion: </strong>Regarding the dose parameters, HIMRT achieved a lower scalp dose compared with 6MV-VMAT. However, the highest ability to reduce the mean scalp dose was showed in 10MV-VMAT.</p><p><strong>Advances in knowledge: </strong>Scalp-sparing WBRT using HIMRT or VMAT may prevent radiation-induced alopecia in patients with BM.</p>\",\"PeriodicalId\":72419,\"journal\":{\"name\":\"BJR open\",\"volume\":\"5 1\",\"pages\":\"20220037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJR open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1259/bjro.20220037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1259/bjro.20220037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dosimetric investigation of whole-brain radiotherapy with helical intensity modulated radiation therapy and volumetric modulated arc therapy for scalp sparing.
Objective: Intensity-modulated radiotherapy (IMRT) is a well-established radiotherapy technique for delivering radiation to cancer with high conformity while sparing the surrounding normal tissue. Two main purposes of this study are: (1) to investigate dose calculation accuracy of helical IMRT (HIMRT) and volumetric-modulated arc therapy (VMAT) on surface region and (2) to evaluate the dosimetric efficacy of HIMRT and VMAT for scalp-sparing in whole brain radiotherapy (WBRT).
Methods: First, using a radiochromic film and water-equivalent phantom with three types of boluses (1, 3, 5 mm), calculation/measurement dose agreement at the surface region in the VMAT and HIMRT plans were examined. Then, HIMRT, 6MV-VMAT and 10MV-VMAT with scalp-sparing, and two conventional three-dimensional conformal radiotherapy plans (6MV-3DCRT and 10MV-3DCRT; as reference data) were created for 30 patients with brain metastasis (30 Gy/10 fractions). The mean dose to the scalp and the scalp volume receiving 24 and 30 Gy were compared.
Results: The percentage dose differences between the calculation and measurement were within 7%, except for the HIMRT plan at a depth of 1 mm. The averaged mean scalp doses [Gy], V24Gy [%], and V30Gy [%] (1SD) for 6MV-3DCRT, 10MV-3DCRT, HIMRT, 6MV-VMAT, and 10MV-VMAT were [26.6 (1.1), 86.4 (7.3), 13.2 (4.2)], [25.4 (1.0), 77.8 (7.5), 13.2 (4.2)], [23.2 (1.5), 42.8 (19.2), 0.2 (0.5)], [23.6 (1.6), 47.5 (17.9), 1.2 (1.8)], and [22.7 (1.7), 36.4 (17.6), 0.7 (1.1)], respectively.
Conclusion: Regarding the dose parameters, HIMRT achieved a lower scalp dose compared with 6MV-VMAT. However, the highest ability to reduce the mean scalp dose was showed in 10MV-VMAT.
Advances in knowledge: Scalp-sparing WBRT using HIMRT or VMAT may prevent radiation-induced alopecia in patients with BM.