Lijing Cheng, John Abraham, Kevin E. Trenberth, John Fasullo, Tim Boyer, Michael E. Mann, Jiang Zhu, Fan Wang, Ricardo Locarnini, Yuanlong Li, Bin Zhang, Fujiang Yu, Liying Wan, Xingrong Chen, Licheng Feng, Xiangzhou Song, Yulong Liu, Franco Reseghetti, Simona Simoncelli, Viktor Gouretski, Gengxin Chen, Alexey Mishonov, Jim Reagan, Guancheng Li
{"title":"海洋又迎来了创纪录的高温年","authors":"Lijing Cheng, John Abraham, Kevin E. Trenberth, John Fasullo, Tim Boyer, Michael E. Mann, Jiang Zhu, Fan Wang, Ricardo Locarnini, Yuanlong Li, Bin Zhang, Fujiang Yu, Liying Wan, Xingrong Chen, Licheng Feng, Xiangzhou Song, Yulong Liu, Franco Reseghetti, Simona Simoncelli, Viktor Gouretski, Gengxin Chen, Alexey Mishonov, Jim Reagan, Guancheng Li","doi":"10.1007/s00376-023-2385-2","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 10<sup>21</sup> Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.</p></div>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"40 6","pages":"963 - 974"},"PeriodicalIF":6.5000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00376-023-2385-2.pdf","citationCount":"12","resultStr":"{\"title\":\"Another Year of Record Heat for the Oceans\",\"authors\":\"Lijing Cheng, John Abraham, Kevin E. Trenberth, John Fasullo, Tim Boyer, Michael E. Mann, Jiang Zhu, Fan Wang, Ricardo Locarnini, Yuanlong Li, Bin Zhang, Fujiang Yu, Liying Wan, Xingrong Chen, Licheng Feng, Xiangzhou Song, Yulong Liu, Franco Reseghetti, Simona Simoncelli, Viktor Gouretski, Gengxin Chen, Alexey Mishonov, Jim Reagan, Guancheng Li\",\"doi\":\"10.1007/s00376-023-2385-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 10<sup>21</sup> Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.</p></div>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"40 6\",\"pages\":\"963 - 974\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00376-023-2385-2.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00376-023-2385-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s00376-023-2385-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 12
摘要
海洋热含量(OHC)、盐度和分层的变化为地球能量和水循环的变化提供了关键指标。由于人类活动排放温室气体和其他人为物质,导致地球气候系统普遍变化,这些循环已经发生了深刻变化。根据OHC的数据,2022年,世界海洋再次成为历史记录中最热的海洋,并超过了2021年的最高纪录。根据IAP/neneneba CAS数据,2022年0–2000 m OHC比2021年高10.9±8.3 ZJ(1 Zetta Joules=1021 Joules);根据NCEI/NOAA的数据,增加了9.1±8.7ZJ。在七个地区中,有四个盆地(北太平洋、北大西洋、地中海和南大洋)录得自20世纪50年代以来的最高OHC。盐度对比指数是对“咸变咸——新鲜变新鲜”模式的量化,在2022年也达到了有记录以来的最高水平,这意味着全球水文循环的持续放大。2022年的区域OHC和盐度变化主要是由强烈的拉尼娜事件引起的。全球上层海洋分层继续呈上升趋势,在2022年跻身前七。
Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 1021 Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.