Mughees Ahmad, Usama Ijaz Bajwa, Yasar Mehmood, Muhammad Waqas Anwar
{"title":"轻量级ResGRU:基于深度学习的基于多模态胸片图像的SARS-CoV-2 (COVID-19)预测及其严重程度分类","authors":"Mughees Ahmad, Usama Ijaz Bajwa, Yasar Mehmood, Muhammad Waqas Anwar","doi":"10.1007/s00521-023-08200-0","DOIUrl":null,"url":null,"abstract":"<p><p>The new COVID-19 emerged in a town in China named Wuhan in December 2019, and since then, this deadly virus has infected 324 million people worldwide and caused 5.53 million deaths by January 2022. Because of the rapid spread of this pandemic, different countries are facing the problem of a shortage of resources, such as medical test kits and ventilators, as the number of cases increased uncontrollably. Therefore, developing a readily available, low-priced, and automated approach for COVID-19 identification is the need of the hour. The proposed study uses chest radiography images (CRIs) such as X-rays and computed tomography (CTs) to detect chest infections, as these modalities contain important information about chest infections. This research introduces a novel hybrid deep learning model named <i>Lightweight ResGRU</i> that uses residual blocks and a bidirectional gated recurrent unit to diagnose non-COVID and COVID-19 infections using pre-processed CRIs. <i>Lightweight ResGRU</i> is used for multi-modal two-class classification (normal and COVID-19), three-class classification (normal, COVID-19, and viral pneumonia), four-class classification (normal, COVID-19, viral pneumonia, and bacterial pneumonia), and COVID-19 severity types' classification (i.e., atypical appearance, indeterminate appearance, typical appearance, and negative for pneumonia). The proposed architecture achieved f-measure of 99.0%, 98.4%, 91.0%, and 80.5% for two-class, three-class, four-class, and COVID-19 severity level classifications, respectively, on unseen data. A large dataset is created by combining and changing different publicly available datasets. The results prove that radiologists can adopt this method to screen chest infections where test kits are limited.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 13","pages":"9637-9655"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873217/pdf/","citationCount":"3","resultStr":"{\"title\":\"Lightweight ResGRU: a deep learning-based prediction of SARS-CoV-2 (COVID-19) and its severity classification using multimodal chest radiography images.\",\"authors\":\"Mughees Ahmad, Usama Ijaz Bajwa, Yasar Mehmood, Muhammad Waqas Anwar\",\"doi\":\"10.1007/s00521-023-08200-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The new COVID-19 emerged in a town in China named Wuhan in December 2019, and since then, this deadly virus has infected 324 million people worldwide and caused 5.53 million deaths by January 2022. Because of the rapid spread of this pandemic, different countries are facing the problem of a shortage of resources, such as medical test kits and ventilators, as the number of cases increased uncontrollably. Therefore, developing a readily available, low-priced, and automated approach for COVID-19 identification is the need of the hour. The proposed study uses chest radiography images (CRIs) such as X-rays and computed tomography (CTs) to detect chest infections, as these modalities contain important information about chest infections. This research introduces a novel hybrid deep learning model named <i>Lightweight ResGRU</i> that uses residual blocks and a bidirectional gated recurrent unit to diagnose non-COVID and COVID-19 infections using pre-processed CRIs. <i>Lightweight ResGRU</i> is used for multi-modal two-class classification (normal and COVID-19), three-class classification (normal, COVID-19, and viral pneumonia), four-class classification (normal, COVID-19, viral pneumonia, and bacterial pneumonia), and COVID-19 severity types' classification (i.e., atypical appearance, indeterminate appearance, typical appearance, and negative for pneumonia). The proposed architecture achieved f-measure of 99.0%, 98.4%, 91.0%, and 80.5% for two-class, three-class, four-class, and COVID-19 severity level classifications, respectively, on unseen data. A large dataset is created by combining and changing different publicly available datasets. The results prove that radiologists can adopt this method to screen chest infections where test kits are limited.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 13\",\"pages\":\"9637-9655\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873217/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-023-08200-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08200-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Lightweight ResGRU: a deep learning-based prediction of SARS-CoV-2 (COVID-19) and its severity classification using multimodal chest radiography images.
The new COVID-19 emerged in a town in China named Wuhan in December 2019, and since then, this deadly virus has infected 324 million people worldwide and caused 5.53 million deaths by January 2022. Because of the rapid spread of this pandemic, different countries are facing the problem of a shortage of resources, such as medical test kits and ventilators, as the number of cases increased uncontrollably. Therefore, developing a readily available, low-priced, and automated approach for COVID-19 identification is the need of the hour. The proposed study uses chest radiography images (CRIs) such as X-rays and computed tomography (CTs) to detect chest infections, as these modalities contain important information about chest infections. This research introduces a novel hybrid deep learning model named Lightweight ResGRU that uses residual blocks and a bidirectional gated recurrent unit to diagnose non-COVID and COVID-19 infections using pre-processed CRIs. Lightweight ResGRU is used for multi-modal two-class classification (normal and COVID-19), three-class classification (normal, COVID-19, and viral pneumonia), four-class classification (normal, COVID-19, viral pneumonia, and bacterial pneumonia), and COVID-19 severity types' classification (i.e., atypical appearance, indeterminate appearance, typical appearance, and negative for pneumonia). The proposed architecture achieved f-measure of 99.0%, 98.4%, 91.0%, and 80.5% for two-class, three-class, four-class, and COVID-19 severity level classifications, respectively, on unseen data. A large dataset is created by combining and changing different publicly available datasets. The results prove that radiologists can adopt this method to screen chest infections where test kits are limited.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.