{"title":"火焰传播理论","authors":"Bernard Lewis, Guenther Von Elbe","doi":"10.1016/S1062-2888(65)80027-2","DOIUrl":null,"url":null,"abstract":"<div><p>In Mallard and Le Chatelier's treatment of flame propagation the problem is considered simply one of heat flow in which the unburnt gas is raised to its ignition temperature. Although crude, this treatment is able to explain a number of observations: limits of inflammability, effect of diluent gases on the latter and on rate of flame propagation, and near coincidence of maximum flame temperature mixture and maximum speed mixture. Later elaborations of Mallard and Le Chatelier's treatment have not advanced the problem appreciably, due to the indefiniteness of the term “ignition temperature”. Certain observations show the importance of diffusion in the treatment of flame propagation. A solution of the problem without the use of ignition temperature has been attempted for the propagation of ozone-oxygen flames, using simplifying assumptions concerning the reaction mechanism and the combined effects of heat flow and diffusion. Agreement in the order of magnitude is found between calculated flame speeds and experimental values. In the flame front there is a steep temperature gradient and also a high local concentration of active species. The width of the flame front is calculated to be of the order of 10<sup>−3</sup> cm. Some consideration is given to the effect of activators and inhibitors on flame speed.</p></div>","PeriodicalId":101045,"journal":{"name":"Proceedings of the Symposium on Combustion","volume":"1 ","pages":"Pages 183-188"},"PeriodicalIF":0.0000,"publicationDate":"1948-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1062-2888(65)80027-2","citationCount":"98","resultStr":"{\"title\":\"Theory of flame propagation\",\"authors\":\"Bernard Lewis, Guenther Von Elbe\",\"doi\":\"10.1016/S1062-2888(65)80027-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Mallard and Le Chatelier's treatment of flame propagation the problem is considered simply one of heat flow in which the unburnt gas is raised to its ignition temperature. Although crude, this treatment is able to explain a number of observations: limits of inflammability, effect of diluent gases on the latter and on rate of flame propagation, and near coincidence of maximum flame temperature mixture and maximum speed mixture. Later elaborations of Mallard and Le Chatelier's treatment have not advanced the problem appreciably, due to the indefiniteness of the term “ignition temperature”. Certain observations show the importance of diffusion in the treatment of flame propagation. A solution of the problem without the use of ignition temperature has been attempted for the propagation of ozone-oxygen flames, using simplifying assumptions concerning the reaction mechanism and the combined effects of heat flow and diffusion. Agreement in the order of magnitude is found between calculated flame speeds and experimental values. In the flame front there is a steep temperature gradient and also a high local concentration of active species. The width of the flame front is calculated to be of the order of 10<sup>−3</sup> cm. Some consideration is given to the effect of activators and inhibitors on flame speed.</p></div>\",\"PeriodicalId\":101045,\"journal\":{\"name\":\"Proceedings of the Symposium on Combustion\",\"volume\":\"1 \",\"pages\":\"Pages 183-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1948-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1062-2888(65)80027-2\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1062288865800272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Combustion","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1062288865800272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Mallard and Le Chatelier's treatment of flame propagation the problem is considered simply one of heat flow in which the unburnt gas is raised to its ignition temperature. Although crude, this treatment is able to explain a number of observations: limits of inflammability, effect of diluent gases on the latter and on rate of flame propagation, and near coincidence of maximum flame temperature mixture and maximum speed mixture. Later elaborations of Mallard and Le Chatelier's treatment have not advanced the problem appreciably, due to the indefiniteness of the term “ignition temperature”. Certain observations show the importance of diffusion in the treatment of flame propagation. A solution of the problem without the use of ignition temperature has been attempted for the propagation of ozone-oxygen flames, using simplifying assumptions concerning the reaction mechanism and the combined effects of heat flow and diffusion. Agreement in the order of magnitude is found between calculated flame speeds and experimental values. In the flame front there is a steep temperature gradient and also a high local concentration of active species. The width of the flame front is calculated to be of the order of 10−3 cm. Some consideration is given to the effect of activators and inhibitors on flame speed.