Yu Lei, Tianyi Zhang, Yu-Chuan Lin, Tomotaroh Granzier-Nakajima, George Bepete, Dorota A. Kowalczyk, Zhong Lin, Da Zhou, Thomas F. Schranghamer, Akhil Dodda, Amritanand Sebastian, Yifeng Chen, Yuanyue Liu, Geoffrey Pourtois, Thomas J. Kempa, Bruno Schuler, Mark T. Edmonds, Su Ying Quek, Ursula Wurstbauer, Stephen M. Wu, Nicholas R. Glavin, Saptarshi Das, Saroj Prasad Dash, Joan M. Redwing, Joshua A. Robinson* and Mauricio Terrones*,
{"title":"石墨烯及其以外:二维材料合成、性质和器件的最新进展","authors":"Yu Lei, Tianyi Zhang, Yu-Chuan Lin, Tomotaroh Granzier-Nakajima, George Bepete, Dorota A. Kowalczyk, Zhong Lin, Da Zhou, Thomas F. Schranghamer, Akhil Dodda, Amritanand Sebastian, Yifeng Chen, Yuanyue Liu, Geoffrey Pourtois, Thomas J. Kempa, Bruno Schuler, Mark T. Edmonds, Su Ying Quek, Ursula Wurstbauer, Stephen M. Wu, Nicholas R. Glavin, Saptarshi Das, Saroj Prasad Dash, Joan M. Redwing, Joshua A. Robinson* and Mauricio Terrones*, ","doi":"10.1021/acsnanoscienceau.2c00017","DOIUrl":null,"url":null,"abstract":"<p >Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including <i>in situ</i> and <i>ex situ</i> methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"2 6","pages":"450–485"},"PeriodicalIF":4.8000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/7e/ng2c00017.PMC9782807.pdf","citationCount":"17","resultStr":"{\"title\":\"Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices\",\"authors\":\"Yu Lei, Tianyi Zhang, Yu-Chuan Lin, Tomotaroh Granzier-Nakajima, George Bepete, Dorota A. Kowalczyk, Zhong Lin, Da Zhou, Thomas F. Schranghamer, Akhil Dodda, Amritanand Sebastian, Yifeng Chen, Yuanyue Liu, Geoffrey Pourtois, Thomas J. Kempa, Bruno Schuler, Mark T. Edmonds, Su Ying Quek, Ursula Wurstbauer, Stephen M. Wu, Nicholas R. Glavin, Saptarshi Das, Saroj Prasad Dash, Joan M. Redwing, Joshua A. Robinson* and Mauricio Terrones*, \",\"doi\":\"10.1021/acsnanoscienceau.2c00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including <i>in situ</i> and <i>ex situ</i> methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"2 6\",\"pages\":\"450–485\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/7e/ng2c00017.PMC9782807.pdf\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices
Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.