André L Lira, Tia C L Kohs, Samantha A Moellmer, Joseph J Shatzel, Owen J T McCarty, Cristina Puy
{"title":"凝血因子 XIa 的底物、辅因子和细胞靶标","authors":"André L Lira, Tia C L Kohs, Samantha A Moellmer, Joseph J Shatzel, Owen J T McCarty, Cristina Puy","doi":"10.1055/s-0043-1764469","DOIUrl":null,"url":null,"abstract":"<p><p>Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"962-969"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa.\",\"authors\":\"André L Lira, Tia C L Kohs, Samantha A Moellmer, Joseph J Shatzel, Owen J T McCarty, Cristina Puy\",\"doi\":\"10.1055/s-0043-1764469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.</p>\",\"PeriodicalId\":21673,\"journal\":{\"name\":\"Seminars in thrombosis and hemostasis\",\"volume\":\" \",\"pages\":\"962-969\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in thrombosis and hemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1764469\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in thrombosis and hemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0043-1764469","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa.
Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.
期刊介绍:
Seminars in Thrombosis and Hemostasis is a topic driven review journal that focuses on all issues relating to hemostatic and thrombotic disorders. As one of the premiere review journals in the field, Seminars in Thrombosis and Hemostasis serves as a comprehensive forum for important advances in clinical and laboratory diagnosis and therapeutic interventions. The journal also publishes peer reviewed original research papers.
Seminars offers an informed perspective on today''s pivotal issues, including hemophilia A & B, thrombophilia, gene therapy, venous and arterial thrombosis, von Willebrand disease, vascular disorders and thromboembolic diseases. Attention is also given to the latest developments in pharmaceutical drugs along with treatment and current management techniques. The journal also frequently publishes sponsored supplements to further highlight emerging trends in the field.