Aparna Praturi, Stefan Schrod, Bhanu Pratap Singh and Parinda Vasa*,
{"title":"白光光谱干涉法表征溶液和纳米胶体中的不均匀性","authors":"Aparna Praturi, Stefan Schrod, Bhanu Pratap Singh and Parinda Vasa*, ","doi":"10.1021/acsnanoscienceau.2c00014","DOIUrl":null,"url":null,"abstract":"<p >We demonstrate the use of white-light spectral interferometry as an effective technique involving only linear optical interactions and a partially coherent light source to measure the complex transmission response function of optical resonance and to determine the corresponding variation in the refractive index relative to a reference. We also discuss experimental arrangements to increase the accuracy and sensitivity of the technique. The superiority of the technique over single-beam absorption measurements is demonstrated by the accurate determination of the response function of the chlorophyll-<i>a</i> solution. The technique is then applied to chlorophyll-<i>a</i> solutions of varying concentrations and gold nanocolloids to characterize inhomogeneous broadening. Results on the inhomogeneity of gold nanocolloids are also supported by transmission electron micrographs, showing distributions of the size and shape of the constituent gold nanorods.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125346/pdf/","citationCount":"0","resultStr":"{\"title\":\"White-Light Spectral Interferometry for Characterizing Inhomogeneity in Solutions and Nanocolloids\",\"authors\":\"Aparna Praturi, Stefan Schrod, Bhanu Pratap Singh and Parinda Vasa*, \",\"doi\":\"10.1021/acsnanoscienceau.2c00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We demonstrate the use of white-light spectral interferometry as an effective technique involving only linear optical interactions and a partially coherent light source to measure the complex transmission response function of optical resonance and to determine the corresponding variation in the refractive index relative to a reference. We also discuss experimental arrangements to increase the accuracy and sensitivity of the technique. The superiority of the technique over single-beam absorption measurements is demonstrated by the accurate determination of the response function of the chlorophyll-<i>a</i> solution. The technique is then applied to chlorophyll-<i>a</i> solutions of varying concentrations and gold nanocolloids to characterize inhomogeneous broadening. Results on the inhomogeneity of gold nanocolloids are also supported by transmission electron micrographs, showing distributions of the size and shape of the constituent gold nanorods.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
White-Light Spectral Interferometry for Characterizing Inhomogeneity in Solutions and Nanocolloids
We demonstrate the use of white-light spectral interferometry as an effective technique involving only linear optical interactions and a partially coherent light source to measure the complex transmission response function of optical resonance and to determine the corresponding variation in the refractive index relative to a reference. We also discuss experimental arrangements to increase the accuracy and sensitivity of the technique. The superiority of the technique over single-beam absorption measurements is demonstrated by the accurate determination of the response function of the chlorophyll-a solution. The technique is then applied to chlorophyll-a solutions of varying concentrations and gold nanocolloids to characterize inhomogeneous broadening. Results on the inhomogeneity of gold nanocolloids are also supported by transmission electron micrographs, showing distributions of the size and shape of the constituent gold nanorods.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.