模糊与粗糙集在农村病人诊断中的边界不确定性管理。

IF 5.9 Q1 Computer Science Journal of Healthcare Informatics Research Pub Date : 2022-03-01 DOI:10.1007/s41666-021-00109-4
Sayan Das, Jaya Sil
{"title":"模糊与粗糙集在农村病人诊断中的边界不确定性管理。","authors":"Sayan Das,&nbsp;Jaya Sil","doi":"10.1007/s41666-021-00109-4","DOIUrl":null,"url":null,"abstract":"<p><p>People of rural India often suffer from acute health conditions like diarrhea, flu, lung congestion, and anemia, but they are not receiving treatment even at primary level due to scarcity of doctors and health infrastructure in remote villages. Health workers are involved in diagnosing the patients based on the symptoms and physiological signs. However, due to inadequate domain knowledge, lack of expertise, and error in measuring the health data, uncertainty creeps in the decision space, resulting many false cases in predicting the diseases. The paper proposes an uncertainty management technique using fuzzy and rough set theory to diagnose the patients with minimum false-positive and false-negative cases. We use fuzzy variables with proper semantic to represent the vagueness of input data, appearing due to measurement error. We derive initial degree of belonging of each patient in two different disease class labels (YES/NO) using the fuzzified input data. Next, we apply rough set theory to manage uncertainty in diagnosing the diseases by learning approximations of the decision boundary between the two class labels. The optimum lower and upper approximation membership functions for each disease class label have been obtained using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Finally, using the proposed <i>disease_similarity_factor</i>, new patients are diagnosed precisely with 98% accuracy and minimum false cases.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982726/pdf/41666_2021_Article_109.pdf","citationCount":"0","resultStr":"{\"title\":\"Managing Boundary Uncertainty in Diagnosing the Patients of Rural Area Using Fuzzy and Rough Set.\",\"authors\":\"Sayan Das,&nbsp;Jaya Sil\",\"doi\":\"10.1007/s41666-021-00109-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>People of rural India often suffer from acute health conditions like diarrhea, flu, lung congestion, and anemia, but they are not receiving treatment even at primary level due to scarcity of doctors and health infrastructure in remote villages. Health workers are involved in diagnosing the patients based on the symptoms and physiological signs. However, due to inadequate domain knowledge, lack of expertise, and error in measuring the health data, uncertainty creeps in the decision space, resulting many false cases in predicting the diseases. The paper proposes an uncertainty management technique using fuzzy and rough set theory to diagnose the patients with minimum false-positive and false-negative cases. We use fuzzy variables with proper semantic to represent the vagueness of input data, appearing due to measurement error. We derive initial degree of belonging of each patient in two different disease class labels (YES/NO) using the fuzzified input data. Next, we apply rough set theory to manage uncertainty in diagnosing the diseases by learning approximations of the decision boundary between the two class labels. The optimum lower and upper approximation membership functions for each disease class label have been obtained using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Finally, using the proposed <i>disease_similarity_factor</i>, new patients are diagnosed precisely with 98% accuracy and minimum false cases.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982726/pdf/41666_2021_Article_109.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-021-00109-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00109-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

印度农村的人经常患有腹泻、流感、肺充血和贫血等急性疾病,但由于偏远村庄医生和卫生基础设施匮乏,他们甚至没有得到初级治疗。卫生工作者根据症状和生理体征参与对患者的诊断。然而,由于领域知识不足,缺乏专业知识,以及在测量健康数据时存在错误,不确定性在决策空间中蔓延,导致许多疾病预测的错误案例。本文提出了一种利用模糊和粗糙集理论的不确定性管理技术来诊断假阳性和假阴性病例最少的患者。我们使用具有适当语义的模糊变量来表示由于测量误差而出现的输入数据的模糊性。我们使用模糊化的输入数据导出每个患者在两种不同疾病类别标签(YES/NO)中的初始归属程度。接下来,我们应用粗糙集理论通过学习两个类标签之间的决策边界的近似来管理疾病诊断中的不确定性。利用非支配排序遗传算法- ii (NSGA-II)获得了每个疾病分类标签的最优上下近似隶属度函数。最后,利用提出的疾病相似度因子,新患者的诊断准确率达到98%,假病例最少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Managing Boundary Uncertainty in Diagnosing the Patients of Rural Area Using Fuzzy and Rough Set.

People of rural India often suffer from acute health conditions like diarrhea, flu, lung congestion, and anemia, but they are not receiving treatment even at primary level due to scarcity of doctors and health infrastructure in remote villages. Health workers are involved in diagnosing the patients based on the symptoms and physiological signs. However, due to inadequate domain knowledge, lack of expertise, and error in measuring the health data, uncertainty creeps in the decision space, resulting many false cases in predicting the diseases. The paper proposes an uncertainty management technique using fuzzy and rough set theory to diagnose the patients with minimum false-positive and false-negative cases. We use fuzzy variables with proper semantic to represent the vagueness of input data, appearing due to measurement error. We derive initial degree of belonging of each patient in two different disease class labels (YES/NO) using the fuzzified input data. Next, we apply rough set theory to manage uncertainty in diagnosing the diseases by learning approximations of the decision boundary between the two class labels. The optimum lower and upper approximation membership functions for each disease class label have been obtained using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Finally, using the proposed disease_similarity_factor, new patients are diagnosed precisely with 98% accuracy and minimum false cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Healthcare Informatics Research
Journal of Healthcare Informatics Research Computer Science-Computer Science Applications
CiteScore
13.60
自引率
1.70%
发文量
12
期刊介绍: Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics.  The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications.   Topics include but are not limited to: ·         healthcare software architecture, framework, design, and engineering;·         electronic health records·         medical data mining·         predictive modeling·         medical information retrieval·         medical natural language processing·         healthcare information systems·         smart health and connected health·         social media analytics·         mobile healthcare·         medical signal processing·         human factors in healthcare·         usability studies in healthcare·         user-interface design for medical devices and healthcare software·         health service delivery·         health games·         security and privacy in healthcare·         medical recommender system·         healthcare workflow management·         disease profiling and personalized treatment·         visualization of medical data·         intelligent medical devices and sensors·         RFID solutions for healthcare·         healthcare decision analytics and support systems·         epidemiological surveillance systems and intervention modeling·         consumer and clinician health information needs, seeking, sharing, and use·         semantic Web, linked data, and ontology·         collaboration technologies for healthcare·         assistive and adaptive ubiquitous computing technologies·         statistics and quality of medical data·         healthcare delivery in developing countries·         health systems modeling and simulation·         computer-aided diagnosis
期刊最新文献
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models Clinical Information Retrieval: A Literature Review Supporting Fair and Efficient Emergency Medical Services in a Large Heterogeneous Region Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1