差分网络分析:统计学视角。

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2021-03-01 Epub Date: 2020-04-06 DOI:10.1002/wics.1508
Ali Shojaie
{"title":"差分网络分析:统计学视角。","authors":"Ali Shojaie","doi":"10.1002/wics.1508","DOIUrl":null,"url":null,"abstract":"<p><p>Networks effectively capture interactions among components of complex systems, and have thus become a mainstay in many scientific disciplines. Growing evidence, especially from biology, suggest that networks undergo changes over time, and in response to external stimuli. In biology and medicine, these changes have been found to be predictive of complex diseases. They have also been used to gain insight into mechanisms of disease initiation and progression. Primarily motivated by biological applications, this article provides a review of recent statistical machine learning methods for inferring networks and identifying changes in their structures.</p>","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":"13 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1508","citationCount":"34","resultStr":"{\"title\":\"Differential Network Analysis: A Statistical Perspective.\",\"authors\":\"Ali Shojaie\",\"doi\":\"10.1002/wics.1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Networks effectively capture interactions among components of complex systems, and have thus become a mainstay in many scientific disciplines. Growing evidence, especially from biology, suggest that networks undergo changes over time, and in response to external stimuli. In biology and medicine, these changes have been found to be predictive of complex diseases. They have also been used to gain insight into mechanisms of disease initiation and progression. Primarily motivated by biological applications, this article provides a review of recent statistical machine learning methods for inferring networks and identifying changes in their structures.</p>\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\"13 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1508\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1508\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/4/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1508","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 34

摘要

网络有效地捕捉复杂系统组件之间的相互作用,因此已成为许多科学学科的支柱。越来越多的证据,尤其是来自生物学的证据表明,网络会随着时间的推移以及对外部刺激的反应而发生变化。在生物学和医学中,这些变化被发现可以预测复杂的疾病。它们也被用来深入了解疾病的发生和发展机制。本文主要受生物学应用的启发,综述了最近用于推断网络和识别其结构变化的统计机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential Network Analysis: A Statistical Perspective.

Networks effectively capture interactions among components of complex systems, and have thus become a mainstay in many scientific disciplines. Growing evidence, especially from biology, suggest that networks undergo changes over time, and in response to external stimuli. In biology and medicine, these changes have been found to be predictive of complex diseases. They have also been used to gain insight into mechanisms of disease initiation and progression. Primarily motivated by biological applications, this article provides a review of recent statistical machine learning methods for inferring networks and identifying changes in their structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1