{"title":"龙葵根中呋喃喹啉和双吲哚类生物碱及其硅分子对接分析。","authors":"Tamrat Tesfaye Ayele, Getahun Tadesse Gurmessa, Zelalem Abdissa, Yadessa Melaku, Ankita Garg, Kibrom Gebreheiwot Bedane, Negera Abdissa","doi":"10.1515/znc-2022-0154","DOIUrl":null,"url":null,"abstract":"<p><p><i>Teclea nobilis</i> is a medicinal plant widely used to treat oral pathogens, gonorrhea, fever, analgesics, asthma, joint pains, pneumonia, and intestinal worms in Ethiopia. Anticipated by these claims, column chromatographic separation of the roots extract of <i>T</i>. <i>nobilis</i> led to the isolation of eight alkaloids (1-8). The structures of the isolated compounds were identified based on their NMR (1D and 2D) spectral data analysis and comparison with reported literature data. <i>In-silico</i> molecular docking analysis of the isolated compounds were performed against <i>Staphylococcus aureus</i> DNA Gyrase (PDB ID: 2XCT) and human topoisomerase IIβ DNA (PDB ID: 3QX3) by using AutoDock Vina. ADMET analysis were performed by SwissADME, PreADMET, and OSIRIS Property predictions. The study revealed that the isolated compounds exhibited promising binding affinity to DNA gyrase, especially with compound 5 forms a stable drug-protein complex. Whereas the ADME and drug-likeness analysis revealed that compound 5 is less absorbed from the gastrointestinal tract, crossblood brain barrier and a P-glycoprotein substrate. This indicated that compound 5 could be a good candidate as anticancer agent provided that <i>in vivo</i> analysis done for more confirmation.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":"78 5-6","pages":"217-227"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Furoquinoline and bisindole alkaloids from the roots of <i>Teclea nobilis</i> and their <i>in-silico</i> molecular docking analysis.\",\"authors\":\"Tamrat Tesfaye Ayele, Getahun Tadesse Gurmessa, Zelalem Abdissa, Yadessa Melaku, Ankita Garg, Kibrom Gebreheiwot Bedane, Negera Abdissa\",\"doi\":\"10.1515/znc-2022-0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Teclea nobilis</i> is a medicinal plant widely used to treat oral pathogens, gonorrhea, fever, analgesics, asthma, joint pains, pneumonia, and intestinal worms in Ethiopia. Anticipated by these claims, column chromatographic separation of the roots extract of <i>T</i>. <i>nobilis</i> led to the isolation of eight alkaloids (1-8). The structures of the isolated compounds were identified based on their NMR (1D and 2D) spectral data analysis and comparison with reported literature data. <i>In-silico</i> molecular docking analysis of the isolated compounds were performed against <i>Staphylococcus aureus</i> DNA Gyrase (PDB ID: 2XCT) and human topoisomerase IIβ DNA (PDB ID: 3QX3) by using AutoDock Vina. ADMET analysis were performed by SwissADME, PreADMET, and OSIRIS Property predictions. The study revealed that the isolated compounds exhibited promising binding affinity to DNA gyrase, especially with compound 5 forms a stable drug-protein complex. Whereas the ADME and drug-likeness analysis revealed that compound 5 is less absorbed from the gastrointestinal tract, crossblood brain barrier and a P-glycoprotein substrate. This indicated that compound 5 could be a good candidate as anticancer agent provided that <i>in vivo</i> analysis done for more confirmation.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":\"78 5-6\",\"pages\":\"217-227\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2022-0154\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2022-0154","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Furoquinoline and bisindole alkaloids from the roots of Teclea nobilis and their in-silico molecular docking analysis.
Teclea nobilis is a medicinal plant widely used to treat oral pathogens, gonorrhea, fever, analgesics, asthma, joint pains, pneumonia, and intestinal worms in Ethiopia. Anticipated by these claims, column chromatographic separation of the roots extract of T. nobilis led to the isolation of eight alkaloids (1-8). The structures of the isolated compounds were identified based on their NMR (1D and 2D) spectral data analysis and comparison with reported literature data. In-silico molecular docking analysis of the isolated compounds were performed against Staphylococcus aureus DNA Gyrase (PDB ID: 2XCT) and human topoisomerase IIβ DNA (PDB ID: 3QX3) by using AutoDock Vina. ADMET analysis were performed by SwissADME, PreADMET, and OSIRIS Property predictions. The study revealed that the isolated compounds exhibited promising binding affinity to DNA gyrase, especially with compound 5 forms a stable drug-protein complex. Whereas the ADME and drug-likeness analysis revealed that compound 5 is less absorbed from the gastrointestinal tract, crossblood brain barrier and a P-glycoprotein substrate. This indicated that compound 5 could be a good candidate as anticancer agent provided that in vivo analysis done for more confirmation.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.