苏云金芽孢杆菌产耐热碱性几丁质酶的研究。kurstaki菌株HBK-51。

Secil Berna Kuzu, Hatice Korkmaz Güvenmez, Aziz Akin Denizci
{"title":"苏云金芽孢杆菌产耐热碱性几丁质酶的研究。kurstaki菌株HBK-51。","authors":"Secil Berna Kuzu,&nbsp;Hatice Korkmaz Güvenmez,&nbsp;Aziz Akin Denizci","doi":"10.1155/2012/135498","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"135498"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/135498","citationCount":"45","resultStr":"{\"title\":\"Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51.\",\"authors\":\"Secil Berna Kuzu,&nbsp;Hatice Korkmaz Güvenmez,&nbsp;Aziz Akin Denizci\",\"doi\":\"10.1155/2012/135498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.</p>\",\"PeriodicalId\":9268,\"journal\":{\"name\":\"Biotechnology Research International\",\"volume\":\"2012 \",\"pages\":\"135498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/135498\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/135498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/135498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文报道了从含几丁质废物中分离鉴定产几丁质酶芽孢杆菌,制备耐热碱性几丁质酶及其酶学特性。苏云金芽孢杆菌亚种kurstaki HBK-51从土壤中分离得到并鉴定。从苏云金芽孢杆菌HBK-51菌株上清液中获得几丁质酶,在110°C和pH 9.0条件下,几丁质酶活性最佳。孵育3小时后,酶在110°C(96%剩余活性)和pH 9.0 ~ 12.0(98%剩余活性)范围内表现出较高的活性。考虑到这些特性,该酶被描述为超嗜热性和高碱性。经过12%的SDS-PAGE分析,获得了两个分子量为50和125 kDa的酶带。在所使用的金属离子和化学物质中,Ni(2+)(32%)、K(+)(44%)和Cu(2+)(56%)提高了酶的活性,而EDTA(7%)、SDS(7%)、Hg(2+)(11%)和乙酰氨基醋乙酯(20%)降低了酶的活性。苏云金芽孢杆菌亚种kurstaki HBK-51是一种重要的菌株,可以作为几丁质酶的生产者在几种生物技术中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51.

This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential Applications of Some Indigenous Bacteria Isolated from Polluted Areas in the Treatment of Brewery Effluents. Generation of Recombinant Antibodies against the beta-(1,6)-Branched beta-(1,3)-D-Glucan Schizophyllan from Immunized Mice via Phage Display. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design Corrigendum to “Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1