COVID-19 在巴西的流行预测。

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Bioinformatics and Biology Insights Pub Date : 2023-04-11 eCollection Date: 2023-01-01 DOI:10.1177/11779322231161939
Oleg Gaidai, Yihan Xing
{"title":"COVID-19 在巴西的流行预测。","authors":"Oleg Gaidai, Yihan Xing","doi":"10.1177/11779322231161939","DOIUrl":null,"url":null,"abstract":"<p><p>This study advocates a novel spatio-temporal method for accurate prediction of COVID-19 epidemic occurrence probability at any time in any Brazil state of interest, and raw clinical observational data have been used. This article describes a novel bio-system reliability approach, particularly suitable for multi-regional environmental and health systems, observed over a sufficient time period, resulting in robust long-term forecast of the virus outbreak probability. COVID-19 daily numbers of recorded patients in all affected Brazil states were taken into account. This work aimed to benchmark novel state-of-the-art methods, making it possible to analyse dynamically observed patient numbers while taking into account relevant regional mapping. Advocated approach may help to monitor and predict possible future epidemic outbreaks within a large variety of multi-regional biological systems. Suggested methodology may be used in various modern public health applications, efficiently using their clinical survey data.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c3/9b/10.1177_11779322231161939.PMC10090958.pdf","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Epidemic Forecast in Brazil.\",\"authors\":\"Oleg Gaidai, Yihan Xing\",\"doi\":\"10.1177/11779322231161939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study advocates a novel spatio-temporal method for accurate prediction of COVID-19 epidemic occurrence probability at any time in any Brazil state of interest, and raw clinical observational data have been used. This article describes a novel bio-system reliability approach, particularly suitable for multi-regional environmental and health systems, observed over a sufficient time period, resulting in robust long-term forecast of the virus outbreak probability. COVID-19 daily numbers of recorded patients in all affected Brazil states were taken into account. This work aimed to benchmark novel state-of-the-art methods, making it possible to analyse dynamically observed patient numbers while taking into account relevant regional mapping. Advocated approach may help to monitor and predict possible future epidemic outbreaks within a large variety of multi-regional biological systems. Suggested methodology may be used in various modern public health applications, efficiently using their clinical survey data.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c3/9b/10.1177_11779322231161939.PMC10090958.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322231161939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322231161939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提倡采用一种新颖的时空方法来准确预测 COVID-19 在巴西任何相关州任何时间的流行病发生概率,并使用了原始的临床观察数据。本文介绍了一种新颖的生物系统可靠性方法,尤其适用于多区域环境和卫生系统,通过对足够长的时间段进行观察,可对病毒爆发概率进行长期稳健预测。该方法考虑了 COVID-19 在巴西所有受影响州记录的每日患者人数。这项工作旨在为最先进的新方法设定基准,使分析动态观测到的患者人数成为可能,同时考虑到相关的区域分布图。所提倡的方法有助于监测和预测未来可能在各种多区域生物系统中爆发的流行病。建议的方法可用于各种现代公共卫生应用,有效利用其临床调查数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 Epidemic Forecast in Brazil.

This study advocates a novel spatio-temporal method for accurate prediction of COVID-19 epidemic occurrence probability at any time in any Brazil state of interest, and raw clinical observational data have been used. This article describes a novel bio-system reliability approach, particularly suitable for multi-regional environmental and health systems, observed over a sufficient time period, resulting in robust long-term forecast of the virus outbreak probability. COVID-19 daily numbers of recorded patients in all affected Brazil states were taken into account. This work aimed to benchmark novel state-of-the-art methods, making it possible to analyse dynamically observed patient numbers while taking into account relevant regional mapping. Advocated approach may help to monitor and predict possible future epidemic outbreaks within a large variety of multi-regional biological systems. Suggested methodology may be used in various modern public health applications, efficiently using their clinical survey data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
期刊最新文献
Charting Peptide Shared Sequences Between 'Diabetes-Viruses' and Human Pancreatic Proteins, Their Structural and Autoimmune Implications. Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods. Conyza bonariensis (L.) Impact on Carbohydrate Metabolism and Oxidative Stress in a Type 2 Diabetic Rat Model. detectCilia: An R Package for Automated Detection and Length Measurement of Primary Cilia. Commitment Complex Splicing Factors in Cancers of the Gastrointestinal Tract-An In Silico Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1