Sangwan Lee, Benjamin J Vesper, Hong Zong, Neal D Hammer, Kim M Elseth, Anthony G M Barrett, Brian M Hoffman, James A Radosevich
{"title":"硫四(乙二醇)单甲基醚功能化卟啉的合成和生物学分析:细胞摄取和毒性研究。","authors":"Sangwan Lee, Benjamin J Vesper, Hong Zong, Neal D Hammer, Kim M Elseth, Anthony G M Barrett, Brian M Hoffman, James A Radosevich","doi":"10.1155/2008/391418","DOIUrl":null,"url":null,"abstract":"<p><p>The porphyrazines (pzs), a class of porphyrin analogues, are being investigated for their potential use as tumor imaging/therapeutic agents. We here examine six peripherally-functionalized M[pz(AnB4-n)] pzs with n=4, 3, or 2 (in a trans conformation) and M = H2 or Zn, where A is an [S((CH2)2O)4Me]2 unit and B is a fused beta,beta'-diisopropyloxybenzo group. Cell viability/proliferation assays and fluorescence microscopy were carried out in both tumor and normal cells. Dark toxicity studies disclosed that four of the compounds exhibited toxicity in both normal and tumor cells; one was nontoxic in both normal and tumor cells, and one was selectively toxic to normal cells. Additionally, three of the pzs showed enhanced photo-induced toxicity with these effects in some cases being observed at treatment concentrations of up to ten-fold lower than that needed for a response in Photofrin. All six compounds were preferentially absorbed by tumor cells, suggesting that they have potential as in vitro diagnostic agents and as aids in the isolation and purification of aberrant cells from pathological specimens. In particular, two promising diagnostic candidates have been identified as part of this work.</p>","PeriodicalId":18452,"journal":{"name":"Metal-Based Drugs","volume":"2008 ","pages":"391418"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/391418","citationCount":"17","resultStr":"{\"title\":\"Synthesis and Biological Analysis of Thiotetra(ethylene glycol) monomethyl Ether-Functionalized Porphyrazines: Cellular Uptake and Toxicity Studies.\",\"authors\":\"Sangwan Lee, Benjamin J Vesper, Hong Zong, Neal D Hammer, Kim M Elseth, Anthony G M Barrett, Brian M Hoffman, James A Radosevich\",\"doi\":\"10.1155/2008/391418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The porphyrazines (pzs), a class of porphyrin analogues, are being investigated for their potential use as tumor imaging/therapeutic agents. We here examine six peripherally-functionalized M[pz(AnB4-n)] pzs with n=4, 3, or 2 (in a trans conformation) and M = H2 or Zn, where A is an [S((CH2)2O)4Me]2 unit and B is a fused beta,beta'-diisopropyloxybenzo group. Cell viability/proliferation assays and fluorescence microscopy were carried out in both tumor and normal cells. Dark toxicity studies disclosed that four of the compounds exhibited toxicity in both normal and tumor cells; one was nontoxic in both normal and tumor cells, and one was selectively toxic to normal cells. Additionally, three of the pzs showed enhanced photo-induced toxicity with these effects in some cases being observed at treatment concentrations of up to ten-fold lower than that needed for a response in Photofrin. All six compounds were preferentially absorbed by tumor cells, suggesting that they have potential as in vitro diagnostic agents and as aids in the isolation and purification of aberrant cells from pathological specimens. In particular, two promising diagnostic candidates have been identified as part of this work.</p>\",\"PeriodicalId\":18452,\"journal\":{\"name\":\"Metal-Based Drugs\",\"volume\":\"2008 \",\"pages\":\"391418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2008/391418\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal-Based Drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/391418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal-Based Drugs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/391418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Biological Analysis of Thiotetra(ethylene glycol) monomethyl Ether-Functionalized Porphyrazines: Cellular Uptake and Toxicity Studies.
The porphyrazines (pzs), a class of porphyrin analogues, are being investigated for their potential use as tumor imaging/therapeutic agents. We here examine six peripherally-functionalized M[pz(AnB4-n)] pzs with n=4, 3, or 2 (in a trans conformation) and M = H2 or Zn, where A is an [S((CH2)2O)4Me]2 unit and B is a fused beta,beta'-diisopropyloxybenzo group. Cell viability/proliferation assays and fluorescence microscopy were carried out in both tumor and normal cells. Dark toxicity studies disclosed that four of the compounds exhibited toxicity in both normal and tumor cells; one was nontoxic in both normal and tumor cells, and one was selectively toxic to normal cells. Additionally, three of the pzs showed enhanced photo-induced toxicity with these effects in some cases being observed at treatment concentrations of up to ten-fold lower than that needed for a response in Photofrin. All six compounds were preferentially absorbed by tumor cells, suggesting that they have potential as in vitro diagnostic agents and as aids in the isolation and purification of aberrant cells from pathological specimens. In particular, two promising diagnostic candidates have been identified as part of this work.