Evangelos G Karvelas, Stavros N Doulkeridis, Theodoros E Karakasidis, Ioannis E Sarris
{"title":"小矩形腔t型微流控反应器中纳米颗粒与血液混合过程的入口条件研究","authors":"Evangelos G Karvelas, Stavros N Doulkeridis, Theodoros E Karakasidis, Ioannis E Sarris","doi":"10.59249/FUAH2942","DOIUrl":null,"url":null,"abstract":"<p><p>During the metastasis of cancer cells, circulating tumor cells (CTCs) are released from the primary tumor, reach the bloodstream, and colonize new organs. A potential reduction of metastasis may be accomplished through the use of nanoparticles in micromixers in order to capture the CTCs that circulates in blood. In the present study, the effective mixing of nanoparticles and the blood that carries the CTCs are investigated. The mixing procedure was studied under various inlet velocity ratios and several T-shaped micromixer geometries with rectangular cavities by using computational fluid dynamics techniques. The Navier-Stokes equations were solved for the blood flow; the discrete motion of particles is evaluated by a Lagrangian method while the diffusion of blood substances is studied by using a scalar transport equation. Results showed that as the velocity ratio between the inlet streams increases, the mixing rate of nanoparticles with the blood flow is increased. Moreover, nanoparticles are uniformly distributed across the mixing channel while their concentration is decreased along the channel. Furthermore, the evolution in time of the blood substances in the mixing channel increases with the increase of the velocity ratio between the two streams. On the other hand, the concentration of both the blood substances and the nanoparticles is decreased in the mixing channel as the velocity ratio increases. Finally, the differences in the dimensions of the rectangular cavities seems to have an insignificant effect both in the evolution in time of the blood substances and the concentration of nanoparticles in the mixing channel.</p>","PeriodicalId":48617,"journal":{"name":"Yale Journal of Biology and Medicine","volume":"96 1","pages":"43-55"},"PeriodicalIF":2.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/86/yjbm_96_1_43.PMC10052591.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of Inlet Conditions in The Mixing Process of Nanoparticles and Blood in a T-Shaped Microfluidic Reactor with Small Rectangular Cavities.\",\"authors\":\"Evangelos G Karvelas, Stavros N Doulkeridis, Theodoros E Karakasidis, Ioannis E Sarris\",\"doi\":\"10.59249/FUAH2942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the metastasis of cancer cells, circulating tumor cells (CTCs) are released from the primary tumor, reach the bloodstream, and colonize new organs. A potential reduction of metastasis may be accomplished through the use of nanoparticles in micromixers in order to capture the CTCs that circulates in blood. In the present study, the effective mixing of nanoparticles and the blood that carries the CTCs are investigated. The mixing procedure was studied under various inlet velocity ratios and several T-shaped micromixer geometries with rectangular cavities by using computational fluid dynamics techniques. The Navier-Stokes equations were solved for the blood flow; the discrete motion of particles is evaluated by a Lagrangian method while the diffusion of blood substances is studied by using a scalar transport equation. Results showed that as the velocity ratio between the inlet streams increases, the mixing rate of nanoparticles with the blood flow is increased. Moreover, nanoparticles are uniformly distributed across the mixing channel while their concentration is decreased along the channel. Furthermore, the evolution in time of the blood substances in the mixing channel increases with the increase of the velocity ratio between the two streams. On the other hand, the concentration of both the blood substances and the nanoparticles is decreased in the mixing channel as the velocity ratio increases. Finally, the differences in the dimensions of the rectangular cavities seems to have an insignificant effect both in the evolution in time of the blood substances and the concentration of nanoparticles in the mixing channel.</p>\",\"PeriodicalId\":48617,\"journal\":{\"name\":\"Yale Journal of Biology and Medicine\",\"volume\":\"96 1\",\"pages\":\"43-55\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/86/yjbm_96_1_43.PMC10052591.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yale Journal of Biology and Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.59249/FUAH2942\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yale Journal of Biology and Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.59249/FUAH2942","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Investigation of Inlet Conditions in The Mixing Process of Nanoparticles and Blood in a T-Shaped Microfluidic Reactor with Small Rectangular Cavities.
During the metastasis of cancer cells, circulating tumor cells (CTCs) are released from the primary tumor, reach the bloodstream, and colonize new organs. A potential reduction of metastasis may be accomplished through the use of nanoparticles in micromixers in order to capture the CTCs that circulates in blood. In the present study, the effective mixing of nanoparticles and the blood that carries the CTCs are investigated. The mixing procedure was studied under various inlet velocity ratios and several T-shaped micromixer geometries with rectangular cavities by using computational fluid dynamics techniques. The Navier-Stokes equations were solved for the blood flow; the discrete motion of particles is evaluated by a Lagrangian method while the diffusion of blood substances is studied by using a scalar transport equation. Results showed that as the velocity ratio between the inlet streams increases, the mixing rate of nanoparticles with the blood flow is increased. Moreover, nanoparticles are uniformly distributed across the mixing channel while their concentration is decreased along the channel. Furthermore, the evolution in time of the blood substances in the mixing channel increases with the increase of the velocity ratio between the two streams. On the other hand, the concentration of both the blood substances and the nanoparticles is decreased in the mixing channel as the velocity ratio increases. Finally, the differences in the dimensions of the rectangular cavities seems to have an insignificant effect both in the evolution in time of the blood substances and the concentration of nanoparticles in the mixing channel.
期刊介绍:
The Yale Journal of Biology and Medicine (YJBM) is a graduate and medical student-run, peer-reviewed, open-access journal dedicated to the publication of original research articles, scientific reviews, articles on medical history, personal perspectives on medicine, policy analyses, case reports, and symposia related to biomedical matters. YJBM is published quarterly and aims to publish articles of interest to both physicians and scientists. YJBM is and has been an internationally distributed journal with a long history of landmark articles. Our contributors feature a notable list of philosophers, statesmen, scientists, and physicians, including Ernst Cassirer, Harvey Cushing, Rene Dubos, Edward Kennedy, Donald Seldin, and Jack Strominger. Our Editorial Board consists of students and faculty members from Yale School of Medicine and Yale University Graduate School of Arts & Sciences. All manuscripts submitted to YJBM are first evaluated on the basis of scientific quality, originality, appropriateness, contribution to the field, and style. Suitable manuscripts are then subject to rigorous, fair, and rapid peer review.