Felix Weiss, Nader Atlasy, Vince van Reijmersdal, Henk Stunnenberg, Cornelia Hulsbergen-Veelken, Peter Friedl
{"title":"三维球体培养检测侵袭肿瘤细胞的适应性治疗反应。","authors":"Felix Weiss, Nader Atlasy, Vince van Reijmersdal, Henk Stunnenberg, Cornelia Hulsbergen-Veelken, Peter Friedl","doi":"10.1007/s44164-022-00040-x","DOIUrl":null,"url":null,"abstract":"<p><p>3D in vitro culture models of cancer cells in extracellular matrix (ECM) have been developed to investigate drug targeting and resistance or, alternatively, mechanisms of invasion; however, models allowing analysis of shared pathways mediating invasion and therapy resistance are lacking. To evaluate therapy response associated with cancer cell invasion, we here used 3D invasion culture of tumor spheroids in 3D fibrillar collagen and applied Ethanol-Ethyl cinnamate (EtOH-ECi) based optical clearing to detect both spheroid core and invasion zone by subcellular-resolved 3D microscopy. When subjected to a single dose of irradiation (4 Gy), we detected significant cell survival in the invasion zone. By physical separation of the core and invasion zone, we identified differentially regulated genes preferentially engaged in invading cells controlling cell division, repair, and survival. This imaging-based 3D invasion culture may be useful for the analysis of complex therapy-response patterns in cancer cells in drug discovery and invasion-associated resistance development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-022-00040-x.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"1 6","pages":"463-471"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119213/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D spheroid culture to examine adaptive therapy response in invading tumor cells.\",\"authors\":\"Felix Weiss, Nader Atlasy, Vince van Reijmersdal, Henk Stunnenberg, Cornelia Hulsbergen-Veelken, Peter Friedl\",\"doi\":\"10.1007/s44164-022-00040-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>3D in vitro culture models of cancer cells in extracellular matrix (ECM) have been developed to investigate drug targeting and resistance or, alternatively, mechanisms of invasion; however, models allowing analysis of shared pathways mediating invasion and therapy resistance are lacking. To evaluate therapy response associated with cancer cell invasion, we here used 3D invasion culture of tumor spheroids in 3D fibrillar collagen and applied Ethanol-Ethyl cinnamate (EtOH-ECi) based optical clearing to detect both spheroid core and invasion zone by subcellular-resolved 3D microscopy. When subjected to a single dose of irradiation (4 Gy), we detected significant cell survival in the invasion zone. By physical separation of the core and invasion zone, we identified differentially regulated genes preferentially engaged in invading cells controlling cell division, repair, and survival. This imaging-based 3D invasion culture may be useful for the analysis of complex therapy-response patterns in cancer cells in drug discovery and invasion-associated resistance development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-022-00040-x.</p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"1 6\",\"pages\":\"463-471\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-022-00040-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00040-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
3D spheroid culture to examine adaptive therapy response in invading tumor cells.
3D in vitro culture models of cancer cells in extracellular matrix (ECM) have been developed to investigate drug targeting and resistance or, alternatively, mechanisms of invasion; however, models allowing analysis of shared pathways mediating invasion and therapy resistance are lacking. To evaluate therapy response associated with cancer cell invasion, we here used 3D invasion culture of tumor spheroids in 3D fibrillar collagen and applied Ethanol-Ethyl cinnamate (EtOH-ECi) based optical clearing to detect both spheroid core and invasion zone by subcellular-resolved 3D microscopy. When subjected to a single dose of irradiation (4 Gy), we detected significant cell survival in the invasion zone. By physical separation of the core and invasion zone, we identified differentially regulated genes preferentially engaged in invading cells controlling cell division, repair, and survival. This imaging-based 3D invasion culture may be useful for the analysis of complex therapy-response patterns in cancer cells in drug discovery and invasion-associated resistance development.
Supplementary information: The online version contains supplementary material available at 10.1007/s44164-022-00040-x.