{"title":"乳房发育和癌症的极性。","authors":"Mara K M Whitford, Luke McCaffrey","doi":"10.1016/bs.ctdb.2023.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"154 ","pages":"245-283"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarity in breast development and cancer.\",\"authors\":\"Mara K M Whitford, Luke McCaffrey\",\"doi\":\"10.1016/bs.ctdb.2023.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.</p>\",\"PeriodicalId\":55191,\"journal\":{\"name\":\"Current Topics in Developmental Biology\",\"volume\":\"154 \",\"pages\":\"245-283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics in Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctdb.2023.02.009\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2023.02.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.