Grazia Ilaria Caruso, Dhwani S Korde, Christian Humpel
{"title":"褪黑素支持Meynert基底核器官型脑切片中胆碱能神经元的存活。","authors":"Grazia Ilaria Caruso, Dhwani S Korde, Christian Humpel","doi":"10.1159/000527887","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleus basalis of Meynert (nBM) is the major source of cholinergic neurons in the basal forebrain, which require nerve growth factor (NGF) for their survival. Melatonin, a pleiotropic hormone, has been shown to exert neuroprotection in several experimental models, but its effect on nBM neurons is not well known. Thus, the aim of this study is to evaluate the effect of melatonin in organotypic brain slices of the nBM. Organotypic nBM slices were incubated for 2 weeks without (control) or with 100 ng/mL NGF, 1 μM melatonin, or a combination of both. Cholinergic neurons were immunohistochemically stained for choline acetyltransferase (ChAT) and subjected to a co-localization study with silent information regulator 1 (SIRT1) and melatonin receptor 1A (MT1A), both potentially involved in melatonin neuroprotection. Counting of ChAT-positive neurons in nBM slices showed that melatonin and NGF significantly increased the number of ChAT-positive neurons compared to the control in a dose-dependent manner (1-10 μM). In co-treatment with NGF, melatonin did not potentiate the maximal NGF-mediated effect. Immunohistochemical analysis proved that cholinergic nBM neurons co-localized with SIRT1 and MT1A receptor. Our data show that melatonin improves the survival of cholinergic nBM neurons and confirm that they express SIRT1 and MT1A.</p>","PeriodicalId":20209,"journal":{"name":"Pharmacology","volume":"108 2","pages":"204-212"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Melatonin Supports the Survival of Cholinergic Neurons in Organotypic Brain Slices of the Basal Nucleus of Meynert.\",\"authors\":\"Grazia Ilaria Caruso, Dhwani S Korde, Christian Humpel\",\"doi\":\"10.1159/000527887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nucleus basalis of Meynert (nBM) is the major source of cholinergic neurons in the basal forebrain, which require nerve growth factor (NGF) for their survival. Melatonin, a pleiotropic hormone, has been shown to exert neuroprotection in several experimental models, but its effect on nBM neurons is not well known. Thus, the aim of this study is to evaluate the effect of melatonin in organotypic brain slices of the nBM. Organotypic nBM slices were incubated for 2 weeks without (control) or with 100 ng/mL NGF, 1 μM melatonin, or a combination of both. Cholinergic neurons were immunohistochemically stained for choline acetyltransferase (ChAT) and subjected to a co-localization study with silent information regulator 1 (SIRT1) and melatonin receptor 1A (MT1A), both potentially involved in melatonin neuroprotection. Counting of ChAT-positive neurons in nBM slices showed that melatonin and NGF significantly increased the number of ChAT-positive neurons compared to the control in a dose-dependent manner (1-10 μM). In co-treatment with NGF, melatonin did not potentiate the maximal NGF-mediated effect. Immunohistochemical analysis proved that cholinergic nBM neurons co-localized with SIRT1 and MT1A receptor. Our data show that melatonin improves the survival of cholinergic nBM neurons and confirm that they express SIRT1 and MT1A.</p>\",\"PeriodicalId\":20209,\"journal\":{\"name\":\"Pharmacology\",\"volume\":\"108 2\",\"pages\":\"204-212\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000527887\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000527887","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Melatonin Supports the Survival of Cholinergic Neurons in Organotypic Brain Slices of the Basal Nucleus of Meynert.
The nucleus basalis of Meynert (nBM) is the major source of cholinergic neurons in the basal forebrain, which require nerve growth factor (NGF) for their survival. Melatonin, a pleiotropic hormone, has been shown to exert neuroprotection in several experimental models, but its effect on nBM neurons is not well known. Thus, the aim of this study is to evaluate the effect of melatonin in organotypic brain slices of the nBM. Organotypic nBM slices were incubated for 2 weeks without (control) or with 100 ng/mL NGF, 1 μM melatonin, or a combination of both. Cholinergic neurons were immunohistochemically stained for choline acetyltransferase (ChAT) and subjected to a co-localization study with silent information regulator 1 (SIRT1) and melatonin receptor 1A (MT1A), both potentially involved in melatonin neuroprotection. Counting of ChAT-positive neurons in nBM slices showed that melatonin and NGF significantly increased the number of ChAT-positive neurons compared to the control in a dose-dependent manner (1-10 μM). In co-treatment with NGF, melatonin did not potentiate the maximal NGF-mediated effect. Immunohistochemical analysis proved that cholinergic nBM neurons co-localized with SIRT1 and MT1A receptor. Our data show that melatonin improves the survival of cholinergic nBM neurons and confirm that they express SIRT1 and MT1A.
期刊介绍:
''Pharmacology'' is an international forum to present and discuss current perspectives in drug research. The journal communicates research in basic and clinical pharmacology and related fields. It covers biochemical pharmacology, molecular pharmacology, immunopharmacology, drug metabolism, pharmacogenetics, analytical toxicology, neuropsychopharmacology, pharmacokinetics and clinical pharmacology. In addition to original papers and short communications of investigative findings and pharmacological profiles the journal contains reviews, comments and perspective notes; research communications of novel therapeutic agents are encouraged.