{"title":"系统性红斑狼疮的发病机制:干扰素及其他。","authors":"Simone Caielli, Zurong Wan, Virginia Pascual","doi":"10.1146/annurev-immunol-101921-042422","DOIUrl":null,"url":null,"abstract":"<p><p>Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":null,"pages":null},"PeriodicalIF":26.9000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond.\",\"authors\":\"Simone Caielli, Zurong Wan, Virginia Pascual\",\"doi\":\"10.1146/annurev-immunol-101921-042422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.</p>\",\"PeriodicalId\":8271,\"journal\":{\"name\":\"Annual review of immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.9000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-immunol-101921-042422\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-immunol-101921-042422","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond.
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
期刊介绍:
The Annual Review of Immunology, in publication since 1983, focuses on basic immune mechanisms and molecular basis of immune diseases in humans. Topics include innate and adaptive immunity; immune cell development and differentiation; immune control of pathogens (viruses, bacteria, parasites) and cancer; and human immunodeficiency and autoimmune diseases. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.