{"title":"弹性网在自适应阈值选择共享多基因检测中的潜在应用。","authors":"Majnu John, Todd Lencz","doi":"10.1515/ijb-2020-0108","DOIUrl":null,"url":null,"abstract":"<p><p>Current research suggests that hundreds to thousands of single nucleotide polymorphisms (SNPs) with small to modest effect sizes contribute to the genetic basis of many disorders, a phenomenon labeled as polygenicity. Additionally, many such disorders demonstrate polygenic overlap, in which risk alleles are shared at associated genetic loci. A simple strategy to detect polygenic overlap between two phenotypes is based on rank-ordering the univariate <i>p</i>-values from two genome-wide association studies (GWASs). Although high-dimensional variable selection strategies such as Lasso and elastic nets have been utilized in other GWAS analysis settings, they are yet to be utilized for detecting shared polygenicity. In this paper, we illustrate how elastic nets, with polygenic scores as the dependent variable and with appropriate adaptation in selecting the penalty parameter, may be utilized for detecting a subset of SNPs involved in shared polygenicity. We provide theory to better understand our approaches, and illustrate their utility using synthetic datasets. Results from extensive simulations are presented comparing the elastic net approaches with the rank ordering approach, in various scenarios. Results from simulations studies exhibit one of the elastic net approaches to be superior when the correlations among the SNPs are high. Finally, we apply the methods on two real datasets to illustrate further the capabilities, limitations and differences among the methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154439/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential application of elastic nets for shared polygenicity detection with adapted threshold selection.\",\"authors\":\"Majnu John, Todd Lencz\",\"doi\":\"10.1515/ijb-2020-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current research suggests that hundreds to thousands of single nucleotide polymorphisms (SNPs) with small to modest effect sizes contribute to the genetic basis of many disorders, a phenomenon labeled as polygenicity. Additionally, many such disorders demonstrate polygenic overlap, in which risk alleles are shared at associated genetic loci. A simple strategy to detect polygenic overlap between two phenotypes is based on rank-ordering the univariate <i>p</i>-values from two genome-wide association studies (GWASs). Although high-dimensional variable selection strategies such as Lasso and elastic nets have been utilized in other GWAS analysis settings, they are yet to be utilized for detecting shared polygenicity. In this paper, we illustrate how elastic nets, with polygenic scores as the dependent variable and with appropriate adaptation in selecting the penalty parameter, may be utilized for detecting a subset of SNPs involved in shared polygenicity. We provide theory to better understand our approaches, and illustrate their utility using synthetic datasets. Results from extensive simulations are presented comparing the elastic net approaches with the rank ordering approach, in various scenarios. Results from simulations studies exhibit one of the elastic net approaches to be superior when the correlations among the SNPs are high. Finally, we apply the methods on two real datasets to illustrate further the capabilities, limitations and differences among the methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154439/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0108\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0108","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Potential application of elastic nets for shared polygenicity detection with adapted threshold selection.
Current research suggests that hundreds to thousands of single nucleotide polymorphisms (SNPs) with small to modest effect sizes contribute to the genetic basis of many disorders, a phenomenon labeled as polygenicity. Additionally, many such disorders demonstrate polygenic overlap, in which risk alleles are shared at associated genetic loci. A simple strategy to detect polygenic overlap between two phenotypes is based on rank-ordering the univariate p-values from two genome-wide association studies (GWASs). Although high-dimensional variable selection strategies such as Lasso and elastic nets have been utilized in other GWAS analysis settings, they are yet to be utilized for detecting shared polygenicity. In this paper, we illustrate how elastic nets, with polygenic scores as the dependent variable and with appropriate adaptation in selecting the penalty parameter, may be utilized for detecting a subset of SNPs involved in shared polygenicity. We provide theory to better understand our approaches, and illustrate their utility using synthetic datasets. Results from extensive simulations are presented comparing the elastic net approaches with the rank ordering approach, in various scenarios. Results from simulations studies exhibit one of the elastic net approaches to be superior when the correlations among the SNPs are high. Finally, we apply the methods on two real datasets to illustrate further the capabilities, limitations and differences among the methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.