用于超分辨率心脏磁共振成像分割的多模态潜空间自对齐。

Yu Deng, Yang Wen, Linglong Qian, Esther Puyol Anton, Hao Xu, Kuberan Pushparajah, Zina Ibrahim, Richard Dobson, Alistair Young
{"title":"用于超分辨率心脏磁共振成像分割的多模态潜空间自对齐。","authors":"Yu Deng, Yang Wen, Linglong Qian, Esther Puyol Anton, Hao Xu, Kuberan Pushparajah, Zina Ibrahim, Richard Dobson, Alistair Young","doi":"10.1007/978-3-031-23443-9_3","DOIUrl":null,"url":null,"abstract":"<p><p>2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.</p>","PeriodicalId":74866,"journal":{"name":"Statistical atlases and computational models of the heart. STACOM (Workshop)","volume":"13593 ","pages":"26-35"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation.\",\"authors\":\"Yu Deng, Yang Wen, Linglong Qian, Esther Puyol Anton, Hao Xu, Kuberan Pushparajah, Zina Ibrahim, Richard Dobson, Alistair Young\",\"doi\":\"10.1007/978-3-031-23443-9_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.</p>\",\"PeriodicalId\":74866,\"journal\":{\"name\":\"Statistical atlases and computational models of the heart. STACOM (Workshop)\",\"volume\":\"13593 \",\"pages\":\"26-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical atlases and computational models of the heart. STACOM (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-23443-9_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical atlases and computational models of the heart. STACOM (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-23443-9_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维心脏磁共振成像为心脏的分割和重建提供了高信噪比的数据。这些图像经常用于临床实践和研究。然而,切片在通面方向的分辨率较低,标准的插值方法无法提高分辨率和精度。我们提出了一种从二维磁共振图像生成高分辨率节段的端到端流水线。该管道利用双侧光流扭曲法恢复通面方向的图像,同时由 SegResNet 自动生成左心室和右心室的切面。多模态潜空间自对齐网络的实施,保证了切片保持从无配对的三维高分辨率 CT 扫描中获得的解剖先验。在三维 MR 血管造影上,训练有素的管道生成的高分辨率片段保持了从各种心血管疾病患者身上获得的解剖先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation.

2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach. Statistical Shape Modeling of Biventricular Anatomy with Shared Boundaries. Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation. An Atlas-Based Analysis of Biventricular Mechanics in Tetralogy of Fallot. Statistical shape analysis of the tricuspid valve in hypoplastic left heart sydrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1