{"title":"在大气压下从活化场发射体中脱附正离子和负离子。","authors":"Jürgen H Gross","doi":"10.1177/14690667221133388","DOIUrl":null,"url":null,"abstract":"<p><p>Field desorption (FD) traditionally is an ionization technique in mass spectrometry (MS) that is performed in high vacuum. So far only two studies have explored FD at atmospheric pressure or even superatmospheric pressure, respectively. This work pursues ion desorption from 13-µm activated tungsten emitters at atmospheric pressure. The emitters are positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface is set to 3-5 kV with respect to the emitter. Under these conditions positive, and for the first time, negative ion desorption is achieved. In either polarity, atmospheric pressure field desorption (APFD) is robust and spectra are reproducible. Both singly charged positive and negative ions formed by these processes are characterized by accurate mass-based formula assignments and in part by tandem mass spectrometry. The compounds analyzed include the ionic liquids trihexyl(tetradecyl) phosphonium tris(pentafluoroethyl) trifluorophosphate) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, the acidic compounds perfluorononanoic acid and polyethylene glycol diacid, as well as two amino-terminated polypropylene glycols. Some surface mobility on the emitter is prerequisite for ion desorption to occur. While ionic liquids inherently provide this mobility, the desorption of ions from solid analytes requires the assistance of a liquid matrix, e.g. glycerol.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903004/pdf/","citationCount":"3","resultStr":"{\"title\":\"Desorption of positive and negative ions from activated field emitters at atmospheric pressure.\",\"authors\":\"Jürgen H Gross\",\"doi\":\"10.1177/14690667221133388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Field desorption (FD) traditionally is an ionization technique in mass spectrometry (MS) that is performed in high vacuum. So far only two studies have explored FD at atmospheric pressure or even superatmospheric pressure, respectively. This work pursues ion desorption from 13-µm activated tungsten emitters at atmospheric pressure. The emitters are positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface is set to 3-5 kV with respect to the emitter. Under these conditions positive, and for the first time, negative ion desorption is achieved. In either polarity, atmospheric pressure field desorption (APFD) is robust and spectra are reproducible. Both singly charged positive and negative ions formed by these processes are characterized by accurate mass-based formula assignments and in part by tandem mass spectrometry. The compounds analyzed include the ionic liquids trihexyl(tetradecyl) phosphonium tris(pentafluoroethyl) trifluorophosphate) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, the acidic compounds perfluorononanoic acid and polyethylene glycol diacid, as well as two amino-terminated polypropylene glycols. Some surface mobility on the emitter is prerequisite for ion desorption to occur. While ionic liquids inherently provide this mobility, the desorption of ions from solid analytes requires the assistance of a liquid matrix, e.g. glycerol.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903004/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667221133388\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667221133388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Desorption of positive and negative ions from activated field emitters at atmospheric pressure.
Field desorption (FD) traditionally is an ionization technique in mass spectrometry (MS) that is performed in high vacuum. So far only two studies have explored FD at atmospheric pressure or even superatmospheric pressure, respectively. This work pursues ion desorption from 13-µm activated tungsten emitters at atmospheric pressure. The emitters are positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface is set to 3-5 kV with respect to the emitter. Under these conditions positive, and for the first time, negative ion desorption is achieved. In either polarity, atmospheric pressure field desorption (APFD) is robust and spectra are reproducible. Both singly charged positive and negative ions formed by these processes are characterized by accurate mass-based formula assignments and in part by tandem mass spectrometry. The compounds analyzed include the ionic liquids trihexyl(tetradecyl) phosphonium tris(pentafluoroethyl) trifluorophosphate) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, the acidic compounds perfluorononanoic acid and polyethylene glycol diacid, as well as two amino-terminated polypropylene glycols. Some surface mobility on the emitter is prerequisite for ion desorption to occur. While ionic liquids inherently provide this mobility, the desorption of ions from solid analytes requires the assistance of a liquid matrix, e.g. glycerol.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.