{"title":"提高季铵盐异喹啉类生物碱小檗碱口服生物利用度的探讨策略:第一部分。物理化学和药代动力学性质。","authors":"Teruo Murakami, Erik Bodor, Nicholas Bodor","doi":"10.1080/17425255.2023.2203857","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Berberine (BBR), a quaternary ammonium isoquinoline alkaloid, is a substrate for P-glycoprotein (P-gp) and cytochrome P450s (CYPs). BBR exhibits a wide variety of pharmacological activities; however, its clinical application is limited due to low oral bioavailability.</p><p><strong>Areas covered: </strong>Physicochemical and pharmacokinetic properties of BBR and its lipophilic metabolites, berberrubine (BRB) and dihydroberberine (DHBBR), were reviewed including solubility/lipophilicity, salt/ion-pair formation, oral bioavailability, first-pass metabolism, and intestinal microbiota-mediated metabolism, by searching research articles using PubMed.</p><p><strong>Expert opinion: </strong>Pharmacokinetic analysis of BBR bioavailability data in rats revealed that the oral bioavailability is limited by the extensive CYPs-mediated intestinal first-pass metabolism, insufficient membrane permeability due to the low solubility and P-gp-mediated efflux transport, and the hepatic first-pass metabolism. Various active metabolites are generated by intestinal first-pass metabolism. Intestinal microbiota also contributes to the BBR metabolism and generates lipophilic metabolites; BRB, an active metabolite, and DHBBR, a precursor that can distribute to the brain. The pharmacokinetic analysis of BBR bioavailability data can provide a clue to developing effective dosage routes and/or formulations that can increase the oral bioavailability of BBR.</p>","PeriodicalId":12250,"journal":{"name":"Expert Opinion on Drug Metabolism & Toxicology","volume":"19 3","pages":"129-137"},"PeriodicalIF":3.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 1. Physicochemical and pharmacokinetic properties.\",\"authors\":\"Teruo Murakami, Erik Bodor, Nicholas Bodor\",\"doi\":\"10.1080/17425255.2023.2203857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Berberine (BBR), a quaternary ammonium isoquinoline alkaloid, is a substrate for P-glycoprotein (P-gp) and cytochrome P450s (CYPs). BBR exhibits a wide variety of pharmacological activities; however, its clinical application is limited due to low oral bioavailability.</p><p><strong>Areas covered: </strong>Physicochemical and pharmacokinetic properties of BBR and its lipophilic metabolites, berberrubine (BRB) and dihydroberberine (DHBBR), were reviewed including solubility/lipophilicity, salt/ion-pair formation, oral bioavailability, first-pass metabolism, and intestinal microbiota-mediated metabolism, by searching research articles using PubMed.</p><p><strong>Expert opinion: </strong>Pharmacokinetic analysis of BBR bioavailability data in rats revealed that the oral bioavailability is limited by the extensive CYPs-mediated intestinal first-pass metabolism, insufficient membrane permeability due to the low solubility and P-gp-mediated efflux transport, and the hepatic first-pass metabolism. Various active metabolites are generated by intestinal first-pass metabolism. Intestinal microbiota also contributes to the BBR metabolism and generates lipophilic metabolites; BRB, an active metabolite, and DHBBR, a precursor that can distribute to the brain. The pharmacokinetic analysis of BBR bioavailability data can provide a clue to developing effective dosage routes and/or formulations that can increase the oral bioavailability of BBR.</p>\",\"PeriodicalId\":12250,\"journal\":{\"name\":\"Expert Opinion on Drug Metabolism & Toxicology\",\"volume\":\"19 3\",\"pages\":\"129-137\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Metabolism & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17425255.2023.2203857\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Metabolism & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17425255.2023.2203857","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 1. Physicochemical and pharmacokinetic properties.
Introduction: Berberine (BBR), a quaternary ammonium isoquinoline alkaloid, is a substrate for P-glycoprotein (P-gp) and cytochrome P450s (CYPs). BBR exhibits a wide variety of pharmacological activities; however, its clinical application is limited due to low oral bioavailability.
Areas covered: Physicochemical and pharmacokinetic properties of BBR and its lipophilic metabolites, berberrubine (BRB) and dihydroberberine (DHBBR), were reviewed including solubility/lipophilicity, salt/ion-pair formation, oral bioavailability, first-pass metabolism, and intestinal microbiota-mediated metabolism, by searching research articles using PubMed.
Expert opinion: Pharmacokinetic analysis of BBR bioavailability data in rats revealed that the oral bioavailability is limited by the extensive CYPs-mediated intestinal first-pass metabolism, insufficient membrane permeability due to the low solubility and P-gp-mediated efflux transport, and the hepatic first-pass metabolism. Various active metabolites are generated by intestinal first-pass metabolism. Intestinal microbiota also contributes to the BBR metabolism and generates lipophilic metabolites; BRB, an active metabolite, and DHBBR, a precursor that can distribute to the brain. The pharmacokinetic analysis of BBR bioavailability data can provide a clue to developing effective dosage routes and/or formulations that can increase the oral bioavailability of BBR.
期刊介绍:
Expert Opinion on Drug Metabolism & Toxicology (ISSN 1742-5255 [print], 1744-7607 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on all aspects of ADME-Tox. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering metabolic, pharmacokinetic and toxicological issues relating to specific drugs, drug-drug interactions, drug classes or their use in specific populations; issues relating to enzymes involved in the metabolism, disposition and excretion of drugs; techniques involved in the study of drug metabolism and toxicology; novel technologies for obtaining ADME-Tox data.
Drug Evaluations reviewing the clinical, toxicological and pharmacokinetic data on a particular drug.
The audience consists of scientists and managers in the pharmaceutical industry, pharmacologists, clinical toxicologists and related professionals.