胰腺 Beta 细胞的分化:炎症因子的双重作用。

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING Current stem cell research & therapy Pub Date : 2024-01-01 DOI:10.2174/1574888X18666230504093649
Faeze Shahedi, Arron Munggela Foma, Azam Mahmoudi-Aznaveh, Mohammad Ali Mazlomi, Zahra Azizi, Mohammad Reza Khorramizadeh
{"title":"胰腺 Beta 细胞的分化:炎症因子的双重作用。","authors":"Faeze Shahedi, Arron Munggela Foma, Azam Mahmoudi-Aznaveh, Mohammad Ali Mazlomi, Zahra Azizi, Mohammad Reza Khorramizadeh","doi":"10.2174/1574888X18666230504093649","DOIUrl":null,"url":null,"abstract":"<p><p>In the past decades, scientists have made outstanding efforts to treat diabetes. However, diabetes treatment is still far from satisfactory due to the complex nature of the disease and the challenges encountered in resolving it. Inflammatory factors are key regulators of the immune system's response to pathological insults, organ neogenesis, rejuvenation of novel cells to replace injured cells and overwhelming disease conditions. Currently, the available treatments for type 1 diabetes include daily insulin injection, pancreatic beta cell or tissue transplantation, and gene therapy. Cell therapy, exploiting differentiation, and reprogramming various types of cells to generate pancreatic insulin-producing cells are novel approaches for the treatment of type 1 diabetes. A better understanding of the inflammatory pathways offers valuable and improved therapeutic options to provide more advanced and better treatments for diabetes. In this review, we investigated different types of inflammatory factors that participate in the pathogenesis of type 1 diabetes, their possible dual impacts on the differentiation, reprogramming, and fusion of other stem cell lines into pancreatic insulin-producing beta cells, and the possibility of applying these factors to improve the treatment of this disease.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"832-839"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation of Pancreatic Beta Cells: Dual Acting of Inflammatory Factors.\",\"authors\":\"Faeze Shahedi, Arron Munggela Foma, Azam Mahmoudi-Aznaveh, Mohammad Ali Mazlomi, Zahra Azizi, Mohammad Reza Khorramizadeh\",\"doi\":\"10.2174/1574888X18666230504093649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past decades, scientists have made outstanding efforts to treat diabetes. However, diabetes treatment is still far from satisfactory due to the complex nature of the disease and the challenges encountered in resolving it. Inflammatory factors are key regulators of the immune system's response to pathological insults, organ neogenesis, rejuvenation of novel cells to replace injured cells and overwhelming disease conditions. Currently, the available treatments for type 1 diabetes include daily insulin injection, pancreatic beta cell or tissue transplantation, and gene therapy. Cell therapy, exploiting differentiation, and reprogramming various types of cells to generate pancreatic insulin-producing cells are novel approaches for the treatment of type 1 diabetes. A better understanding of the inflammatory pathways offers valuable and improved therapeutic options to provide more advanced and better treatments for diabetes. In this review, we investigated different types of inflammatory factors that participate in the pathogenesis of type 1 diabetes, their possible dual impacts on the differentiation, reprogramming, and fusion of other stem cell lines into pancreatic insulin-producing beta cells, and the possibility of applying these factors to improve the treatment of this disease.</p>\",\"PeriodicalId\":10979,\"journal\":{\"name\":\"Current stem cell research & therapy\",\"volume\":\" \",\"pages\":\"832-839\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current stem cell research & therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1574888X18666230504093649\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X18666230504093649","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,科学家们为治疗糖尿病做出了卓越的努力。然而,由于糖尿病的复杂性和治疗过程中遇到的挑战,糖尿病的治疗仍然远远不能令人满意。炎症因子是免疫系统对病理损伤、器官新生、新细胞再生以替代受伤细胞和压倒性疾病条件做出反应的关键调节因子。目前,1 型糖尿病的治疗方法包括每日注射胰岛素、胰腺 beta 细胞或组织移植以及基因治疗。细胞疗法、利用分化和重编程各类细胞以生成胰岛素分泌细胞是治疗 1 型糖尿病的新方法。更好地了解炎症通路为提供更先进、更好的糖尿病治疗方法提供了宝贵的改良治疗方案。在这篇综述中,我们研究了参与1型糖尿病发病机制的各类炎症因子,它们对其他干细胞系分化、重编程和融合为胰岛素分泌β细胞可能产生的双重影响,以及应用这些因子改善该疾病治疗的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentiation of Pancreatic Beta Cells: Dual Acting of Inflammatory Factors.

In the past decades, scientists have made outstanding efforts to treat diabetes. However, diabetes treatment is still far from satisfactory due to the complex nature of the disease and the challenges encountered in resolving it. Inflammatory factors are key regulators of the immune system's response to pathological insults, organ neogenesis, rejuvenation of novel cells to replace injured cells and overwhelming disease conditions. Currently, the available treatments for type 1 diabetes include daily insulin injection, pancreatic beta cell or tissue transplantation, and gene therapy. Cell therapy, exploiting differentiation, and reprogramming various types of cells to generate pancreatic insulin-producing cells are novel approaches for the treatment of type 1 diabetes. A better understanding of the inflammatory pathways offers valuable and improved therapeutic options to provide more advanced and better treatments for diabetes. In this review, we investigated different types of inflammatory factors that participate in the pathogenesis of type 1 diabetes, their possible dual impacts on the differentiation, reprogramming, and fusion of other stem cell lines into pancreatic insulin-producing beta cells, and the possibility of applying these factors to improve the treatment of this disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
期刊最新文献
Deciphering the Immunomodulatory Pathways of Mesenchymal Stem Cells Insights into Suture Stem Cells: Distributions, Characteristics, and Applications A Study on the Role of miR-126 in the Repair Process after Spinal Cord Injury Magnesium Regulates the Migration and Differentiation of NPMSCs via the Integrin Signaling Pathway Salvianolic Acid B Accelerates Osteoporotic Fracture Healing via LncRNA-MALAT1/miR-155-5p/HIF1A Axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1