Jian Hu, Yuan-Yuan Huang, Shuang-Ping Liu, Jian Mao
{"title":"乙醇含量对黄酒挥发性成分检测的影响","authors":"Jian Hu, Yuan-Yuan Huang, Shuang-Ping Liu, Jian Mao","doi":"10.3724/SP.J.1123.2022.07018","DOIUrl":null,"url":null,"abstract":"<p><p>Huangjiu (Chinese rice wine) is a traditional Chinese fermented wine with a unique flavor. The components of this wine are complex, and the ethanol content of different Huangjiu preparations varies greatly. In this study, changes in the chromatographic peak areas of the volatile components of Huangjiu samples with different ethanol contents were measured using headspace-gas chromatography (HS-GC). The influence of ethanol on the quantitative detection of different volatile components of Huangjiu at gas-liquid equilibrium was also analyzed. When the ethanol content of Huangjiu was in the range of 10%-19% vol, the peak areas of 16 volatile components (i. e., <i>sec</i>-butanol, <i>n</i>-propanol, isobutanol, <i>n</i>-butanol, isoamyl alcohol, <i>β</i>-phenyl-ethanol, acetaldehyde, isovaleraldehyde, benzaldehyde, ethyl formate, ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl hexanoate, ethyl lactate, and diethyl succinate) were negatively correlated with the ethanol content. Increases in the ethanol content of the liquor changed the gas-liquid equilibrium of most other trace volatile components. In addition, only the peak area of acetal was positively correlated with ethanol content. The content of acetal in Huangjiu was affected by the alcohol content, and its decomposition reaction occurred along with the dilution process. The influence coefficient of ethanol content on the peak area of the above compounds ranged from -12.4% to 4.9%. The vapor pressure of most volatile components decreased with increasing ethanol content, and different components were affected in different ways. Compared with those of other components, the peak areas of methanol, furfural, and acetic acid were less affected by the ethanol content. These components were also affected by other factors, such as ionization and chemical reactions occurring during the dilution process. When different wine samples were adjusted to the same ethanol content, the concentration of volatile components in these samples became proportional to the total chromatographic peak area and the influence of the matrix effect of ethanol on the quantitative analysis was effectively eliminated. Thus, when researchers use pretreatment methods based on the principle of gas-liquid balance to carry out the quantitative detection of flavor components, they should adjust different rice wine samples to the same alcohol content to effectively control the matrix effect caused by differences in ethanol content and achieve accurate quantitative analysis.</p>","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 5","pages":"450-455"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122762/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Influence of ethanol content on the detection of volatile components in Huangjiu].\",\"authors\":\"Jian Hu, Yuan-Yuan Huang, Shuang-Ping Liu, Jian Mao\",\"doi\":\"10.3724/SP.J.1123.2022.07018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Huangjiu (Chinese rice wine) is a traditional Chinese fermented wine with a unique flavor. The components of this wine are complex, and the ethanol content of different Huangjiu preparations varies greatly. In this study, changes in the chromatographic peak areas of the volatile components of Huangjiu samples with different ethanol contents were measured using headspace-gas chromatography (HS-GC). The influence of ethanol on the quantitative detection of different volatile components of Huangjiu at gas-liquid equilibrium was also analyzed. When the ethanol content of Huangjiu was in the range of 10%-19% vol, the peak areas of 16 volatile components (i. e., <i>sec</i>-butanol, <i>n</i>-propanol, isobutanol, <i>n</i>-butanol, isoamyl alcohol, <i>β</i>-phenyl-ethanol, acetaldehyde, isovaleraldehyde, benzaldehyde, ethyl formate, ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl hexanoate, ethyl lactate, and diethyl succinate) were negatively correlated with the ethanol content. Increases in the ethanol content of the liquor changed the gas-liquid equilibrium of most other trace volatile components. In addition, only the peak area of acetal was positively correlated with ethanol content. The content of acetal in Huangjiu was affected by the alcohol content, and its decomposition reaction occurred along with the dilution process. The influence coefficient of ethanol content on the peak area of the above compounds ranged from -12.4% to 4.9%. The vapor pressure of most volatile components decreased with increasing ethanol content, and different components were affected in different ways. Compared with those of other components, the peak areas of methanol, furfural, and acetic acid were less affected by the ethanol content. These components were also affected by other factors, such as ionization and chemical reactions occurring during the dilution process. When different wine samples were adjusted to the same ethanol content, the concentration of volatile components in these samples became proportional to the total chromatographic peak area and the influence of the matrix effect of ethanol on the quantitative analysis was effectively eliminated. Thus, when researchers use pretreatment methods based on the principle of gas-liquid balance to carry out the quantitative detection of flavor components, they should adjust different rice wine samples to the same alcohol content to effectively control the matrix effect caused by differences in ethanol content and achieve accurate quantitative analysis.</p>\",\"PeriodicalId\":9864,\"journal\":{\"name\":\"色谱\",\"volume\":\"41 5\",\"pages\":\"450-455\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122762/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"色谱\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1123.2022.07018\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"色谱","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2022.07018","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
[Influence of ethanol content on the detection of volatile components in Huangjiu].
Huangjiu (Chinese rice wine) is a traditional Chinese fermented wine with a unique flavor. The components of this wine are complex, and the ethanol content of different Huangjiu preparations varies greatly. In this study, changes in the chromatographic peak areas of the volatile components of Huangjiu samples with different ethanol contents were measured using headspace-gas chromatography (HS-GC). The influence of ethanol on the quantitative detection of different volatile components of Huangjiu at gas-liquid equilibrium was also analyzed. When the ethanol content of Huangjiu was in the range of 10%-19% vol, the peak areas of 16 volatile components (i. e., sec-butanol, n-propanol, isobutanol, n-butanol, isoamyl alcohol, β-phenyl-ethanol, acetaldehyde, isovaleraldehyde, benzaldehyde, ethyl formate, ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl hexanoate, ethyl lactate, and diethyl succinate) were negatively correlated with the ethanol content. Increases in the ethanol content of the liquor changed the gas-liquid equilibrium of most other trace volatile components. In addition, only the peak area of acetal was positively correlated with ethanol content. The content of acetal in Huangjiu was affected by the alcohol content, and its decomposition reaction occurred along with the dilution process. The influence coefficient of ethanol content on the peak area of the above compounds ranged from -12.4% to 4.9%. The vapor pressure of most volatile components decreased with increasing ethanol content, and different components were affected in different ways. Compared with those of other components, the peak areas of methanol, furfural, and acetic acid were less affected by the ethanol content. These components were also affected by other factors, such as ionization and chemical reactions occurring during the dilution process. When different wine samples were adjusted to the same ethanol content, the concentration of volatile components in these samples became proportional to the total chromatographic peak area and the influence of the matrix effect of ethanol on the quantitative analysis was effectively eliminated. Thus, when researchers use pretreatment methods based on the principle of gas-liquid balance to carry out the quantitative detection of flavor components, they should adjust different rice wine samples to the same alcohol content to effectively control the matrix effect caused by differences in ethanol content and achieve accurate quantitative analysis.
期刊介绍:
"Chinese Journal of Chromatography" mainly reports the basic research results of chromatography, important application results of chromatography and its interdisciplinary subjects and their progress, including the application of new methods, new technologies, and new instruments in various fields, the research and development of chromatography instruments and components, instrument analysis teaching research, etc. It is suitable for researchers engaged in chromatography basic and application technology research in scientific research institutes, master and doctoral students in chromatography and related disciplines, grassroots researchers in the field of analysis and testing, and relevant personnel in chromatography instrument development and operation units.
The journal has columns such as special planning, focus, perspective, research express, research paper, monograph and review, micro review, technology and application, and teaching research.