Samira Amereh, Fatemeh Zeynali Kelishomi, Fatemeh Ghayaz, Amir Javadi, Amir Peymani, Fatemeh Fardsanei, Ehsan Aali, Farhad Nikkhahi
{"title":"美罗培尼-瓦波巴坦对伊朗产β -内酰胺酶的肺炎克雷伯菌和大肠杆菌的活性研究","authors":"Samira Amereh, Fatemeh Zeynali Kelishomi, Fatemeh Ghayaz, Amir Javadi, Amir Peymani, Fatemeh Fardsanei, Ehsan Aali, Farhad Nikkhahi","doi":"10.1556/030.2022.01782","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated the activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates. In our study antibiotic susceptibility testing, double disk synergy test, modified Hodge test were applied. Detection of ESBL, AmpC, and carbapenemase genes was performed by PCR. Multilocus sequence typing (MLST) analysis was done on OXA-48 producing K. pneumoniae strains. Our results showed that among E. coli and K. pneumoniae isolates, 41.1% and 40% of strains produced ESBL, respectively. Additionally, the prevalence of AmpC producing K. pneumoniae and E. coli was 4% and 45.5%, respectively. Altogether 64.2% of K. pneumoniae strains and one E. coli isolate produced carbapenemase. Among OXA-48 producing K. pneumoniae strains ST3500 and ST2528 were detected by MLST. Based on the phenotypic results of this study, vaborbactam was an effective inhibitor on the third-generation cephalosporin-resistant isolates (P < 0.0001). Meropenem-vaborbactam combination had the highest efficacy on KPC producing strains, and it had limited activity on isolates producing OXA-48 type beta-lactamases, whereas no effect was observed on NDM-1 producing isolates. Our study provided valuable information regarding the vaborbactam inhibitory effect on β-lactamase-producing strains.</p>","PeriodicalId":7119,"journal":{"name":"Acta microbiologica et immunologica Hungarica","volume":"69 3","pages":"201-208"},"PeriodicalIF":1.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates in Iran.\",\"authors\":\"Samira Amereh, Fatemeh Zeynali Kelishomi, Fatemeh Ghayaz, Amir Javadi, Amir Peymani, Fatemeh Fardsanei, Ehsan Aali, Farhad Nikkhahi\",\"doi\":\"10.1556/030.2022.01782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We evaluated the activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates. In our study antibiotic susceptibility testing, double disk synergy test, modified Hodge test were applied. Detection of ESBL, AmpC, and carbapenemase genes was performed by PCR. Multilocus sequence typing (MLST) analysis was done on OXA-48 producing K. pneumoniae strains. Our results showed that among E. coli and K. pneumoniae isolates, 41.1% and 40% of strains produced ESBL, respectively. Additionally, the prevalence of AmpC producing K. pneumoniae and E. coli was 4% and 45.5%, respectively. Altogether 64.2% of K. pneumoniae strains and one E. coli isolate produced carbapenemase. Among OXA-48 producing K. pneumoniae strains ST3500 and ST2528 were detected by MLST. Based on the phenotypic results of this study, vaborbactam was an effective inhibitor on the third-generation cephalosporin-resistant isolates (P < 0.0001). Meropenem-vaborbactam combination had the highest efficacy on KPC producing strains, and it had limited activity on isolates producing OXA-48 type beta-lactamases, whereas no effect was observed on NDM-1 producing isolates. Our study provided valuable information regarding the vaborbactam inhibitory effect on β-lactamase-producing strains.</p>\",\"PeriodicalId\":7119,\"journal\":{\"name\":\"Acta microbiologica et immunologica Hungarica\",\"volume\":\"69 3\",\"pages\":\"201-208\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta microbiologica et immunologica Hungarica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1556/030.2022.01782\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta microbiologica et immunologica Hungarica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1556/030.2022.01782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates in Iran.
We evaluated the activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates. In our study antibiotic susceptibility testing, double disk synergy test, modified Hodge test were applied. Detection of ESBL, AmpC, and carbapenemase genes was performed by PCR. Multilocus sequence typing (MLST) analysis was done on OXA-48 producing K. pneumoniae strains. Our results showed that among E. coli and K. pneumoniae isolates, 41.1% and 40% of strains produced ESBL, respectively. Additionally, the prevalence of AmpC producing K. pneumoniae and E. coli was 4% and 45.5%, respectively. Altogether 64.2% of K. pneumoniae strains and one E. coli isolate produced carbapenemase. Among OXA-48 producing K. pneumoniae strains ST3500 and ST2528 were detected by MLST. Based on the phenotypic results of this study, vaborbactam was an effective inhibitor on the third-generation cephalosporin-resistant isolates (P < 0.0001). Meropenem-vaborbactam combination had the highest efficacy on KPC producing strains, and it had limited activity on isolates producing OXA-48 type beta-lactamases, whereas no effect was observed on NDM-1 producing isolates. Our study provided valuable information regarding the vaborbactam inhibitory effect on β-lactamase-producing strains.
期刊介绍:
AMIH is devoted to the publication of research in all fields of medical microbiology (bacteriology, virology, parasitology, mycology); immunology of infectious diseases and study of the microbiome related to human diseases.