{"title":"在简单的绘图中插入一条边是困难的。","authors":"Alan Arroyo, Fabian Klute, Irene Parada, Birgit Vogtenhuber, Raimund Seidel, Tilo Wiedera","doi":"10.1007/s00454-022-00394-9","DOIUrl":null,"url":null,"abstract":"<p><p>A <i>simple drawing</i> <i>D</i>(<i>G</i>) of a graph <i>G</i> is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge <i>e</i> in the complement of <i>G</i> can be <i>inserted</i> into <i>D</i>(<i>G</i>) if there exists a simple drawing of <math><mrow><mi>G</mi> <mo>+</mo> <mi>e</mi></mrow> </math> extending <i>D</i>(<i>G</i>). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of <i>G</i> can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles <math><mi>A</mi></math> and a pseudosegment <math><mi>σ</mi></math> , it can be decided in polynomial time whether there exists a pseudocircle <math><msub><mi>Φ</mi> <mi>σ</mi></msub> </math> extending <math><mi>σ</mi></math> for which <math><mrow><mi>A</mi> <mo>∪</mo> <mo>{</mo> <msub><mi>Φ</mi> <mi>σ</mi></msub> <mo>}</mo></mrow> </math> is again an arrangement of pseudocircles.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 3","pages":"745-770"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984358/pdf/","citationCount":"4","resultStr":"{\"title\":\"Inserting One Edge into a Simple Drawing is Hard.\",\"authors\":\"Alan Arroyo, Fabian Klute, Irene Parada, Birgit Vogtenhuber, Raimund Seidel, Tilo Wiedera\",\"doi\":\"10.1007/s00454-022-00394-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A <i>simple drawing</i> <i>D</i>(<i>G</i>) of a graph <i>G</i> is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge <i>e</i> in the complement of <i>G</i> can be <i>inserted</i> into <i>D</i>(<i>G</i>) if there exists a simple drawing of <math><mrow><mi>G</mi> <mo>+</mo> <mi>e</mi></mrow> </math> extending <i>D</i>(<i>G</i>). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of <i>G</i> can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles <math><mi>A</mi></math> and a pseudosegment <math><mi>σ</mi></math> , it can be decided in polynomial time whether there exists a pseudocircle <math><msub><mi>Φ</mi> <mi>σ</mi></msub> </math> extending <math><mi>σ</mi></math> for which <math><mrow><mi>A</mi> <mo>∪</mo> <mo>{</mo> <msub><mi>Φ</mi> <mi>σ</mi></msub> <mo>}</mo></mrow> </math> is again an arrangement of pseudocircles.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"69 3\",\"pages\":\"745-770\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984358/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00394-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00394-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A simple drawingD(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of extending D(G). As a result of Levi's Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles and a pseudosegment , it can be decided in polynomial time whether there exists a pseudocircle extending for which is again an arrangement of pseudocircles.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.