Cris Martin P Jacoba, Recivall P Salongcay, Abdulrahman K Rageh, Lizzie Anne C Aquino, Glenn P Alog, Aileen V Saunar, Tunde Peto, Paolo S Silva
{"title":"手持式视网膜成像与光学相干断层扫描在糖尿病患者黄斑病理学鉴定中的比较。","authors":"Cris Martin P Jacoba, Recivall P Salongcay, Abdulrahman K Rageh, Lizzie Anne C Aquino, Glenn P Alog, Aileen V Saunar, Tunde Peto, Paolo S Silva","doi":"10.1159/000530720","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Handheld retinal imaging cameras are relatively inexpensive and highly portable devices that have the potential to significantly expand diabetic retinopathy (DR) screening, allowing a much broader population to be evaluated. However, it is essential to evaluate if these devices can accurately identify vision-threatening macular diseases if DR screening programs will rely on these instruments. Thus, the purpose of this study was to evaluate the detection of diabetic macular pathology using monoscopic macula-centered images using mydriatic handheld retinal imaging compared with spectral domain optical coherence tomography (SDOCT).</p><p><strong>Methods: </strong>Mydriatic 40°-60° macula-centered images taken with 3 handheld retinal imaging devices (Aurora [AU], SmartScope [SS], RetinaVue 700 [RV]) were compared with the Cirrus 6000 SDOCT taken during the same visit. Images were evaluated for the presence of diabetic macular edema (DME) on monoscopic fundus photographs adapted from Early Treatment Diabetic Retinopathy Study (ETDRS) definitions (no DME, noncenter-involved DME [non-ciDME], and center-involved DME [ciDME]). Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for each device with SDOCT as gold standard.</p><p><strong>Results: </strong>Severity by ETDRS photos: no DR 33.3%, mild NPDR 20.4%, moderate 14.2%, severe 11.6%, proliferative 20.4%, and ungradable for DR 0%; no DME 83.1%, non-ciDME 4.9%, ciDME 12.0%, and ungradable for DME 0%. Gradable images by SDOCT (N = 217, 96.4%) showed no DME in 75.6%, non-ciDME in 9.8%, and ciDME in 11.1%. The ungradable rate for images (poor visualization in >50% of the macula) was AU: 0.9%, SS: 4.4%, and RV: 6.2%. For DME, sensitivity and specificity were similar across devices (0.5-0.64, 0.93-0.97). For nondiabetic macular pathology (ERM, pigment epithelial detachment, traction retinal detachment) across all devices, sensitivity was low to moderate (0.2-0.5) but highly specific (0.93-1.00).</p><p><strong>Conclusions: </strong>Compared to SDOCT, handheld macular imaging attained high specificity but low sensitivity in identifying macular pathology. This suggests the importance of SDOCT evaluation for patients suspected to have DME on fundus photography, leading to more appropriate referral refinement.</p>","PeriodicalId":19662,"journal":{"name":"Ophthalmic Research","volume":" ","pages":"903-912"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparisons of Handheld Retinal Imaging with Optical Coherence Tomography for the Identification of Macular Pathology in Patients with Diabetes.\",\"authors\":\"Cris Martin P Jacoba, Recivall P Salongcay, Abdulrahman K Rageh, Lizzie Anne C Aquino, Glenn P Alog, Aileen V Saunar, Tunde Peto, Paolo S Silva\",\"doi\":\"10.1159/000530720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Handheld retinal imaging cameras are relatively inexpensive and highly portable devices that have the potential to significantly expand diabetic retinopathy (DR) screening, allowing a much broader population to be evaluated. However, it is essential to evaluate if these devices can accurately identify vision-threatening macular diseases if DR screening programs will rely on these instruments. Thus, the purpose of this study was to evaluate the detection of diabetic macular pathology using monoscopic macula-centered images using mydriatic handheld retinal imaging compared with spectral domain optical coherence tomography (SDOCT).</p><p><strong>Methods: </strong>Mydriatic 40°-60° macula-centered images taken with 3 handheld retinal imaging devices (Aurora [AU], SmartScope [SS], RetinaVue 700 [RV]) were compared with the Cirrus 6000 SDOCT taken during the same visit. Images were evaluated for the presence of diabetic macular edema (DME) on monoscopic fundus photographs adapted from Early Treatment Diabetic Retinopathy Study (ETDRS) definitions (no DME, noncenter-involved DME [non-ciDME], and center-involved DME [ciDME]). Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for each device with SDOCT as gold standard.</p><p><strong>Results: </strong>Severity by ETDRS photos: no DR 33.3%, mild NPDR 20.4%, moderate 14.2%, severe 11.6%, proliferative 20.4%, and ungradable for DR 0%; no DME 83.1%, non-ciDME 4.9%, ciDME 12.0%, and ungradable for DME 0%. Gradable images by SDOCT (N = 217, 96.4%) showed no DME in 75.6%, non-ciDME in 9.8%, and ciDME in 11.1%. The ungradable rate for images (poor visualization in >50% of the macula) was AU: 0.9%, SS: 4.4%, and RV: 6.2%. For DME, sensitivity and specificity were similar across devices (0.5-0.64, 0.93-0.97). For nondiabetic macular pathology (ERM, pigment epithelial detachment, traction retinal detachment) across all devices, sensitivity was low to moderate (0.2-0.5) but highly specific (0.93-1.00).</p><p><strong>Conclusions: </strong>Compared to SDOCT, handheld macular imaging attained high specificity but low sensitivity in identifying macular pathology. This suggests the importance of SDOCT evaluation for patients suspected to have DME on fundus photography, leading to more appropriate referral refinement.</p>\",\"PeriodicalId\":19662,\"journal\":{\"name\":\"Ophthalmic Research\",\"volume\":\" \",\"pages\":\"903-912\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000530720\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000530720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Comparisons of Handheld Retinal Imaging with Optical Coherence Tomography for the Identification of Macular Pathology in Patients with Diabetes.
Introduction: Handheld retinal imaging cameras are relatively inexpensive and highly portable devices that have the potential to significantly expand diabetic retinopathy (DR) screening, allowing a much broader population to be evaluated. However, it is essential to evaluate if these devices can accurately identify vision-threatening macular diseases if DR screening programs will rely on these instruments. Thus, the purpose of this study was to evaluate the detection of diabetic macular pathology using monoscopic macula-centered images using mydriatic handheld retinal imaging compared with spectral domain optical coherence tomography (SDOCT).
Methods: Mydriatic 40°-60° macula-centered images taken with 3 handheld retinal imaging devices (Aurora [AU], SmartScope [SS], RetinaVue 700 [RV]) were compared with the Cirrus 6000 SDOCT taken during the same visit. Images were evaluated for the presence of diabetic macular edema (DME) on monoscopic fundus photographs adapted from Early Treatment Diabetic Retinopathy Study (ETDRS) definitions (no DME, noncenter-involved DME [non-ciDME], and center-involved DME [ciDME]). Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for each device with SDOCT as gold standard.
Results: Severity by ETDRS photos: no DR 33.3%, mild NPDR 20.4%, moderate 14.2%, severe 11.6%, proliferative 20.4%, and ungradable for DR 0%; no DME 83.1%, non-ciDME 4.9%, ciDME 12.0%, and ungradable for DME 0%. Gradable images by SDOCT (N = 217, 96.4%) showed no DME in 75.6%, non-ciDME in 9.8%, and ciDME in 11.1%. The ungradable rate for images (poor visualization in >50% of the macula) was AU: 0.9%, SS: 4.4%, and RV: 6.2%. For DME, sensitivity and specificity were similar across devices (0.5-0.64, 0.93-0.97). For nondiabetic macular pathology (ERM, pigment epithelial detachment, traction retinal detachment) across all devices, sensitivity was low to moderate (0.2-0.5) but highly specific (0.93-1.00).
Conclusions: Compared to SDOCT, handheld macular imaging attained high specificity but low sensitivity in identifying macular pathology. This suggests the importance of SDOCT evaluation for patients suspected to have DME on fundus photography, leading to more appropriate referral refinement.
期刊介绍:
''Ophthalmic Research'' features original papers and reviews reporting on translational and clinical studies. Authors from throughout the world cover research topics on every field in connection with physical, physiologic, pharmacological, biochemical and molecular biological aspects of ophthalmology. This journal also aims to provide a record of international clinical research for both researchers and clinicians in ophthalmology. Finally, the transfer of information from fundamental research to clinical research and clinical practice is particularly welcome.