在脂多糖诱导的急性肺损伤中,SENP3通过HIF-1α/PKM2轴促进M1巨噬细胞极化。

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Innate Immunity Pub Date : 2023-01-01 DOI:10.1177/17534259231166212
Shuangjun He, Chenyu Fan, Yiming Ji, Qian Su, Feng Zhao, Cuiying Xie, Xuelian Chen, Yang Zhang, Yi Chen
{"title":"在脂多糖诱导的急性肺损伤中,SENP3通过HIF-1α/PKM2轴促进M1巨噬细胞极化。","authors":"Shuangjun He,&nbsp;Chenyu Fan,&nbsp;Yiming Ji,&nbsp;Qian Su,&nbsp;Feng Zhao,&nbsp;Cuiying Xie,&nbsp;Xuelian Chen,&nbsp;Yang Zhang,&nbsp;Yi Chen","doi":"10.1177/17534259231166212","DOIUrl":null,"url":null,"abstract":"<p><p>M1/M2 macrophage polarization plays a pivotal role in the development of acute lung injury (ALI). The hypoxia-inducible factor-1α/pyruvate kinase M2 (HIF-1α/PKM2) axis, which functions upstream of macrophage polarization, has been implicated in this process. The function of HIF-1α is known to be tightly regulated by SUMOylation. Upregulation of SUMO-specific peptidase 3 (SENP3), a deSUMOylation enzyme, is induced by reactive oxygen species (ROS), which are abundantly produced during ALI. To explore the links between SENP3, macrophage polarization, and lung injury, we used mice with Senp3 conditional knockout in myeloid cells. In the lipopolysaccharide (LPS)-induced ALI model, we found that in vitro and in vivo SENP3 deficiency markedly inhibited M1 polarization and production of pro-inflammatory cytokines and alleviated lung injury. Further, we demonstrated that SENP3 deficiency suppressed the LPS-induced inflammatory response through PKM2 in a HIF-1α-dependent manner. Moreover, mice injected with LPS after PKM2 inhibitor (shikonin) treatment displayed inhibition of M1 macrophage polarization and reduced lung injury. In summary, this work revealed that SENP3 promotes M1 macrophage polarization and production of proinflammatory cytokines via the HIF-1α/PKM2 axis, contributing to lung injury; thus, SENP3 may represent a potential therapeutic target for ALI treatment.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/03/fd/10.1177_17534259231166212.PMC10164277.pdf","citationCount":"2","resultStr":"{\"title\":\"SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury.\",\"authors\":\"Shuangjun He,&nbsp;Chenyu Fan,&nbsp;Yiming Ji,&nbsp;Qian Su,&nbsp;Feng Zhao,&nbsp;Cuiying Xie,&nbsp;Xuelian Chen,&nbsp;Yang Zhang,&nbsp;Yi Chen\",\"doi\":\"10.1177/17534259231166212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>M1/M2 macrophage polarization plays a pivotal role in the development of acute lung injury (ALI). The hypoxia-inducible factor-1α/pyruvate kinase M2 (HIF-1α/PKM2) axis, which functions upstream of macrophage polarization, has been implicated in this process. The function of HIF-1α is known to be tightly regulated by SUMOylation. Upregulation of SUMO-specific peptidase 3 (SENP3), a deSUMOylation enzyme, is induced by reactive oxygen species (ROS), which are abundantly produced during ALI. To explore the links between SENP3, macrophage polarization, and lung injury, we used mice with Senp3 conditional knockout in myeloid cells. In the lipopolysaccharide (LPS)-induced ALI model, we found that in vitro and in vivo SENP3 deficiency markedly inhibited M1 polarization and production of pro-inflammatory cytokines and alleviated lung injury. Further, we demonstrated that SENP3 deficiency suppressed the LPS-induced inflammatory response through PKM2 in a HIF-1α-dependent manner. Moreover, mice injected with LPS after PKM2 inhibitor (shikonin) treatment displayed inhibition of M1 macrophage polarization and reduced lung injury. In summary, this work revealed that SENP3 promotes M1 macrophage polarization and production of proinflammatory cytokines via the HIF-1α/PKM2 axis, contributing to lung injury; thus, SENP3 may represent a potential therapeutic target for ALI treatment.</p>\",\"PeriodicalId\":13676,\"journal\":{\"name\":\"Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/03/fd/10.1177_17534259231166212.PMC10164277.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innate Immunity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/17534259231166212\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259231166212","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

M1/M2巨噬细胞极化在急性肺损伤(ALI)的发生发展中起关键作用。缺氧诱导因子-1α/丙酮酸激酶M2 (HIF-1α/PKM2)轴在巨噬细胞极化的上游起作用,参与了这一过程。HIF-1α的功能受到SUMOylation的严格调控。sumo特异性肽酶3 (SENP3)的上调是由活性氧(ROS)诱导的,活性氧在ALI期间大量产生。为了探索SENP3、巨噬细胞极化和肺损伤之间的联系,我们使用了髓细胞中SENP3条件敲除的小鼠。在脂多糖(LPS)诱导的ALI模型中,我们发现体外和体内SENP3缺乏明显抑制M1极化和促炎细胞因子的产生,减轻肺损伤。此外,我们证明了SENP3缺乏通过PKM2以hif -1α依赖的方式抑制lps诱导的炎症反应。此外,在PKM2抑制剂(紫草素)处理后,小鼠注射LPS可抑制M1巨噬细胞极化,减轻肺损伤。综上所述,本研究表明,SENP3通过HIF-1α/PKM2轴促进M1巨噬细胞极化和促炎细胞因子的产生,促进肺损伤;因此,SENP3可能是ALI治疗的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury.

M1/M2 macrophage polarization plays a pivotal role in the development of acute lung injury (ALI). The hypoxia-inducible factor-1α/pyruvate kinase M2 (HIF-1α/PKM2) axis, which functions upstream of macrophage polarization, has been implicated in this process. The function of HIF-1α is known to be tightly regulated by SUMOylation. Upregulation of SUMO-specific peptidase 3 (SENP3), a deSUMOylation enzyme, is induced by reactive oxygen species (ROS), which are abundantly produced during ALI. To explore the links between SENP3, macrophage polarization, and lung injury, we used mice with Senp3 conditional knockout in myeloid cells. In the lipopolysaccharide (LPS)-induced ALI model, we found that in vitro and in vivo SENP3 deficiency markedly inhibited M1 polarization and production of pro-inflammatory cytokines and alleviated lung injury. Further, we demonstrated that SENP3 deficiency suppressed the LPS-induced inflammatory response through PKM2 in a HIF-1α-dependent manner. Moreover, mice injected with LPS after PKM2 inhibitor (shikonin) treatment displayed inhibition of M1 macrophage polarization and reduced lung injury. In summary, this work revealed that SENP3 promotes M1 macrophage polarization and production of proinflammatory cytokines via the HIF-1α/PKM2 axis, contributing to lung injury; thus, SENP3 may represent a potential therapeutic target for ALI treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innate Immunity
Innate Immunity 生物-免疫学
CiteScore
7.20
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.
期刊最新文献
Innate lymphoid cells and infectious diseases. Selective IgG binding to the LPS glycolipid core found in bovine colostrum, or milk, during Escherichia coli mastitis influences endotoxin function The in vitro effect of myeloperoxidase oxidized LDL on THP-1 derived macrophages. A pilot study of monocytes in relapsing remitting multiple sclerosis: Correlation with disease activity. CRISPR activation as a platform to identify interferon stimulated genes with anti-viral function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1