NCodR:一种多类支持向量机分类方法,用于区分植物绿芽科植物中的非编码rna。

Chandran Nithin, Sunandan Mukherjee, Jolly Basak, Ranjit Prasad Bahadur
{"title":"NCodR:一种多类支持向量机分类方法,用于区分植物绿芽科植物中的非编码rna。","authors":"Chandran Nithin,&nbsp;Sunandan Mukherjee,&nbsp;Jolly Basak,&nbsp;Ranjit Prasad Bahadur","doi":"10.1017/qpb.2022.18","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) are major players in the regulation of gene expression. This study analyses seven classes of ncRNAs in plants using sequence and secondary structure-based RNA folding measures. We observe distinct regions in the distribution of AU content along with overlapping regions for different ncRNA classes. Additionally, we find similar averages for minimum folding energy index across various ncRNAs classes except for pre-miRNAs and lncRNAs. Various RNA folding measures show similar trends among the different ncRNA classes except for pre-miRNAs and lncRNAs. We observe different k-mer repeat signatures of length three among various ncRNA classes. However, in pre-miRs and lncRNAs, a diffuse pattern of k-mers is observed. Using these attributes, we train eight different classifiers to discriminate various ncRNA classes in plants. Support vector machines employing radial basis function show the highest accuracy (average F1 of ~96%) in discriminating ncRNAs, and the classifier is implemented as a web server, NCodR.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":"3 ","pages":"e23"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095871/pdf/","citationCount":"2","resultStr":"{\"title\":\"NCodR: A multi-class support vector machine classification to distinguish non-coding RNAs in Viridiplantae.\",\"authors\":\"Chandran Nithin,&nbsp;Sunandan Mukherjee,&nbsp;Jolly Basak,&nbsp;Ranjit Prasad Bahadur\",\"doi\":\"10.1017/qpb.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-coding RNAs (ncRNAs) are major players in the regulation of gene expression. This study analyses seven classes of ncRNAs in plants using sequence and secondary structure-based RNA folding measures. We observe distinct regions in the distribution of AU content along with overlapping regions for different ncRNA classes. Additionally, we find similar averages for minimum folding energy index across various ncRNAs classes except for pre-miRNAs and lncRNAs. Various RNA folding measures show similar trends among the different ncRNA classes except for pre-miRNAs and lncRNAs. We observe different k-mer repeat signatures of length three among various ncRNA classes. However, in pre-miRs and lncRNAs, a diffuse pattern of k-mers is observed. Using these attributes, we train eight different classifiers to discriminate various ncRNA classes in plants. Support vector machines employing radial basis function show the highest accuracy (average F1 of ~96%) in discriminating ncRNAs, and the classifier is implemented as a web server, NCodR.</p>\",\"PeriodicalId\":20825,\"journal\":{\"name\":\"Quantitative Plant Biology\",\"volume\":\"3 \",\"pages\":\"e23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095871/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qpb.2022.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非编码rna (ncRNAs)在基因表达调控中起着重要作用。本研究使用基于序列和二级结构的RNA折叠方法分析了植物中7类ncrna。我们观察到AU含量分布的不同区域以及不同ncRNA类别的重叠区域。此外,我们发现除了pre- mirna和lncrna外,各种ncrna类别的最小折叠能量指数的平均值相似。除了pre- mirna和lncrna外,各种RNA折叠测量在不同的ncRNA类别中显示出相似的趋势。我们观察到不同ncRNA类别中长度为3的k-mer重复特征不同。然而,在pre-miRs和lncrna中,观察到k-mers的弥漫性模式。利用这些属性,我们训练了8个不同的分类器来区分植物中不同的ncRNA类别。采用径向基函数的支持向量机在识别ncrna方面显示出最高的准确率(平均F1为96%),该分类器作为web服务器NCodR实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NCodR: A multi-class support vector machine classification to distinguish non-coding RNAs in Viridiplantae.

Non-coding RNAs (ncRNAs) are major players in the regulation of gene expression. This study analyses seven classes of ncRNAs in plants using sequence and secondary structure-based RNA folding measures. We observe distinct regions in the distribution of AU content along with overlapping regions for different ncRNA classes. Additionally, we find similar averages for minimum folding energy index across various ncRNAs classes except for pre-miRNAs and lncRNAs. Various RNA folding measures show similar trends among the different ncRNA classes except for pre-miRNAs and lncRNAs. We observe different k-mer repeat signatures of length three among various ncRNA classes. However, in pre-miRs and lncRNAs, a diffuse pattern of k-mers is observed. Using these attributes, we train eight different classifiers to discriminate various ncRNA classes in plants. Support vector machines employing radial basis function show the highest accuracy (average F1 of ~96%) in discriminating ncRNAs, and the classifier is implemented as a web server, NCodR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Barthlott effect Heritable responses to stress in plants Quantification of pollen viability in Lantana camara by digital holographic microscopy. The 1972 Meadows report: A wake-up call for plant science. Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1