Harshad Chaudhari, Smita Mahendrakar, Apokbo Akporotu, Michael Yudd
{"title":"腹膜透析期间过量使用醋酸糊精引起的中度高渗性低钠血症。","authors":"Harshad Chaudhari, Smita Mahendrakar, Apokbo Akporotu, Michael Yudd","doi":"10.5414/CNCS110854","DOIUrl":null,"url":null,"abstract":"<p><p>Icodextrin use during the long dwell of a peritoneal dialysis (PD) regimen is commonly used to increase ultrafiltration. Its use may cause a mild and clinically insignificant degree of hyponatremia. We describe a patient who was admitted twice to our medical center on an atypical continuous ambulatory peritoneal dialysis (CAPD) regimen utilizing solely icodextrin with 2 exchanges (12-hour dwells). On both admissions, he had hyperosmolar hyponatremia in the 120-mmol/L range with a large osmolal gap. After icodextrin was stopped and his PD prescription was switched to dextrose solutions, both hyponatremia corrected and the osmolal gap quickly disappeared. The accumulation of osmotically active solute in extracellular fluids results in efflux of water from the cellular compartment and produces both hyponatremia and hypertonicity [1]. This tonic effect occurs most frequently with hyperglycemia, but other substances can also cause this, including mannitol, sorbitol, glycine, and maltose [1, 2]. In this report, we present a patient with end-stage renal disease (ERSD) on an atypical off-label PD regimen utilizing solely icodextrin solutions who developed hyperosmolar hyponatremia in the 120-mmol/L range, with a large osmolal gap. This appeared to be due to absorbed metabolites of icodextrin, mainly maltose.</p>","PeriodicalId":10398,"journal":{"name":"Clinical Nephrology. Case Studies","volume":"11 ","pages":"61-65"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112000/pdf/","citationCount":"0","resultStr":"{\"title\":\"Moderate hyperosmolar hyponatremia caused by excessive off-label use of icodextrin during peritoneal dialysis.\",\"authors\":\"Harshad Chaudhari, Smita Mahendrakar, Apokbo Akporotu, Michael Yudd\",\"doi\":\"10.5414/CNCS110854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Icodextrin use during the long dwell of a peritoneal dialysis (PD) regimen is commonly used to increase ultrafiltration. Its use may cause a mild and clinically insignificant degree of hyponatremia. We describe a patient who was admitted twice to our medical center on an atypical continuous ambulatory peritoneal dialysis (CAPD) regimen utilizing solely icodextrin with 2 exchanges (12-hour dwells). On both admissions, he had hyperosmolar hyponatremia in the 120-mmol/L range with a large osmolal gap. After icodextrin was stopped and his PD prescription was switched to dextrose solutions, both hyponatremia corrected and the osmolal gap quickly disappeared. The accumulation of osmotically active solute in extracellular fluids results in efflux of water from the cellular compartment and produces both hyponatremia and hypertonicity [1]. This tonic effect occurs most frequently with hyperglycemia, but other substances can also cause this, including mannitol, sorbitol, glycine, and maltose [1, 2]. In this report, we present a patient with end-stage renal disease (ERSD) on an atypical off-label PD regimen utilizing solely icodextrin solutions who developed hyperosmolar hyponatremia in the 120-mmol/L range, with a large osmolal gap. This appeared to be due to absorbed metabolites of icodextrin, mainly maltose.</p>\",\"PeriodicalId\":10398,\"journal\":{\"name\":\"Clinical Nephrology. Case Studies\",\"volume\":\"11 \",\"pages\":\"61-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Nephrology. Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5414/CNCS110854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Nephrology. Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5414/CNCS110854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moderate hyperosmolar hyponatremia caused by excessive off-label use of icodextrin during peritoneal dialysis.
Icodextrin use during the long dwell of a peritoneal dialysis (PD) regimen is commonly used to increase ultrafiltration. Its use may cause a mild and clinically insignificant degree of hyponatremia. We describe a patient who was admitted twice to our medical center on an atypical continuous ambulatory peritoneal dialysis (CAPD) regimen utilizing solely icodextrin with 2 exchanges (12-hour dwells). On both admissions, he had hyperosmolar hyponatremia in the 120-mmol/L range with a large osmolal gap. After icodextrin was stopped and his PD prescription was switched to dextrose solutions, both hyponatremia corrected and the osmolal gap quickly disappeared. The accumulation of osmotically active solute in extracellular fluids results in efflux of water from the cellular compartment and produces both hyponatremia and hypertonicity [1]. This tonic effect occurs most frequently with hyperglycemia, but other substances can also cause this, including mannitol, sorbitol, glycine, and maltose [1, 2]. In this report, we present a patient with end-stage renal disease (ERSD) on an atypical off-label PD regimen utilizing solely icodextrin solutions who developed hyperosmolar hyponatremia in the 120-mmol/L range, with a large osmolal gap. This appeared to be due to absorbed metabolites of icodextrin, mainly maltose.