Yun Zhao, Felix Luong, Simon Teshuva, Andria Pelentritou, William Woods, David Liley, Daniel F Schmidt, Mario Boley, Levin Kuhlmann
{"title":"通过优化卡尔曼滤波初始条件改进神经生理过程成像。","authors":"Yun Zhao, Felix Luong, Simon Teshuva, Andria Pelentritou, William Woods, David Liley, Daniel F Schmidt, Mario Boley, Levin Kuhlmann","doi":"10.1142/S0129065723500247","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work presented a framework for space-time-resolved neurophysiological process imaging that augments existing electromagnetic source imaging techniques. In particular, a nonlinear Analytic Kalman filter (AKF) has been developed to efficiently infer the states and parameters of neural mass models believed to underlie the generation of electromagnetic source currents. Unfortunately, as the initialization determines the performance of the Kalman filter, and the ground truth is typically unavailable for initialization, this framework might produce suboptimal results unless significant effort is spent on tuning the initialization. Notably, the relation between the initialization and overall filter performance is only given implicitly and is expensive to evaluate; implying that conventional optimization techniques, e.g. gradient or sampling based, are inapplicable. To address this problem, a novel efficient framework based on blackbox optimization has been developed to find the optimal initialization by reducing the signal prediction error. Multiple state-of-the-art optimization methods were compared and distinctively, Gaussian process optimization decreased the objective function by 82.1% and parameter estimation error by 62.5% on average with the simulation data compared to no optimization applied. The framework took only 1.6[Formula: see text]h and reduced the objective function by an average of 13.2% on 3.75[Formula: see text]min 4714-source channel magnetoencephalography data. This yields an improved method of neurophysiological process imaging that can be used to uncover complex underpinnings of brain dynamics.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Neurophysiological Process Imaging Through Optimization of Kalman Filter Initial Conditions.\",\"authors\":\"Yun Zhao, Felix Luong, Simon Teshuva, Andria Pelentritou, William Woods, David Liley, Daniel F Schmidt, Mario Boley, Levin Kuhlmann\",\"doi\":\"10.1142/S0129065723500247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent work presented a framework for space-time-resolved neurophysiological process imaging that augments existing electromagnetic source imaging techniques. In particular, a nonlinear Analytic Kalman filter (AKF) has been developed to efficiently infer the states and parameters of neural mass models believed to underlie the generation of electromagnetic source currents. Unfortunately, as the initialization determines the performance of the Kalman filter, and the ground truth is typically unavailable for initialization, this framework might produce suboptimal results unless significant effort is spent on tuning the initialization. Notably, the relation between the initialization and overall filter performance is only given implicitly and is expensive to evaluate; implying that conventional optimization techniques, e.g. gradient or sampling based, are inapplicable. To address this problem, a novel efficient framework based on blackbox optimization has been developed to find the optimal initialization by reducing the signal prediction error. Multiple state-of-the-art optimization methods were compared and distinctively, Gaussian process optimization decreased the objective function by 82.1% and parameter estimation error by 62.5% on average with the simulation data compared to no optimization applied. The framework took only 1.6[Formula: see text]h and reduced the objective function by an average of 13.2% on 3.75[Formula: see text]min 4714-source channel magnetoencephalography data. This yields an improved method of neurophysiological process imaging that can be used to uncover complex underpinnings of brain dynamics.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500247\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500247","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved Neurophysiological Process Imaging Through Optimization of Kalman Filter Initial Conditions.
Recent work presented a framework for space-time-resolved neurophysiological process imaging that augments existing electromagnetic source imaging techniques. In particular, a nonlinear Analytic Kalman filter (AKF) has been developed to efficiently infer the states and parameters of neural mass models believed to underlie the generation of electromagnetic source currents. Unfortunately, as the initialization determines the performance of the Kalman filter, and the ground truth is typically unavailable for initialization, this framework might produce suboptimal results unless significant effort is spent on tuning the initialization. Notably, the relation between the initialization and overall filter performance is only given implicitly and is expensive to evaluate; implying that conventional optimization techniques, e.g. gradient or sampling based, are inapplicable. To address this problem, a novel efficient framework based on blackbox optimization has been developed to find the optimal initialization by reducing the signal prediction error. Multiple state-of-the-art optimization methods were compared and distinctively, Gaussian process optimization decreased the objective function by 82.1% and parameter estimation error by 62.5% on average with the simulation data compared to no optimization applied. The framework took only 1.6[Formula: see text]h and reduced the objective function by an average of 13.2% on 3.75[Formula: see text]min 4714-source channel magnetoencephalography data. This yields an improved method of neurophysiological process imaging that can be used to uncover complex underpinnings of brain dynamics.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.