与孤立性先天性白内障相关的一种新的WFS1变异。

IF 1.8 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Cold Spring Harbor Molecular Case Studies Pub Date : 2023-02-01 DOI:10.1101/mcs.a006259
Angela Krutish, James Elmore, Werner Ilse, Janine L Johnston, Dustin Hittel, Marina Kerr, Aneal Khan, Cheryl Rockman-Greenberg, Aizeddin A Mhanni
{"title":"与孤立性先天性白内障相关的一种新的WFS1变异。","authors":"Angela Krutish,&nbsp;James Elmore,&nbsp;Werner Ilse,&nbsp;Janine L Johnston,&nbsp;Dustin Hittel,&nbsp;Marina Kerr,&nbsp;Aneal Khan,&nbsp;Cheryl Rockman-Greenberg,&nbsp;Aizeddin A Mhanni","doi":"10.1101/mcs.a006259","DOIUrl":null,"url":null,"abstract":"<p><p>Biallelic variants in the <i>WFS1</i> gene are associated with Wolfram syndrome. However, recent publications document that heterozygous variants can lead to a variety of phenotypes, such as Wolfram-like syndrome or isolated features of Wolfram syndrome. In this case report, we present a male patient with a history of congenital cataracts and subjective complaints of muscle weakness. Clinical assessment demonstrated normal muscle strength, and genomic, biochemical, electrophysiologic, and muscle biopsy studies did not identify a potential cause of the proband's perceived muscle weakness. Whole-exome sequencing identified a novel de novo variant in the <i>WFS1</i> gene (c.1243G > T), representing one of only several patients in the published literature with isolated congenital cataracts and a heterozygous <i>WFS1</i> variant. The variety of phenotypes associated with heterozygous variants in <i>WFS1</i> suggests that this gene should be considered as a cause of both dominant and biallelic/recessive forms of disease. Future research should focus on elucidating the mechanism(s) of disease and variable expressivity in <i>WFS1</i> in order to improve our ability to provide patients and families with anticipatory guidance about the disease, including appropriate screening and medical interventions.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/da/MCS006259Kru.PMC10111794.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel <i>WFS1</i> variant associated with isolated congenital cataracts.\",\"authors\":\"Angela Krutish,&nbsp;James Elmore,&nbsp;Werner Ilse,&nbsp;Janine L Johnston,&nbsp;Dustin Hittel,&nbsp;Marina Kerr,&nbsp;Aneal Khan,&nbsp;Cheryl Rockman-Greenberg,&nbsp;Aizeddin A Mhanni\",\"doi\":\"10.1101/mcs.a006259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biallelic variants in the <i>WFS1</i> gene are associated with Wolfram syndrome. However, recent publications document that heterozygous variants can lead to a variety of phenotypes, such as Wolfram-like syndrome or isolated features of Wolfram syndrome. In this case report, we present a male patient with a history of congenital cataracts and subjective complaints of muscle weakness. Clinical assessment demonstrated normal muscle strength, and genomic, biochemical, electrophysiologic, and muscle biopsy studies did not identify a potential cause of the proband's perceived muscle weakness. Whole-exome sequencing identified a novel de novo variant in the <i>WFS1</i> gene (c.1243G > T), representing one of only several patients in the published literature with isolated congenital cataracts and a heterozygous <i>WFS1</i> variant. The variety of phenotypes associated with heterozygous variants in <i>WFS1</i> suggests that this gene should be considered as a cause of both dominant and biallelic/recessive forms of disease. Future research should focus on elucidating the mechanism(s) of disease and variable expressivity in <i>WFS1</i> in order to improve our ability to provide patients and families with anticipatory guidance about the disease, including appropriate screening and medical interventions.</p>\",\"PeriodicalId\":10360,\"journal\":{\"name\":\"Cold Spring Harbor Molecular Case Studies\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/da/MCS006259Kru.PMC10111794.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor Molecular Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/mcs.a006259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor Molecular Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/mcs.a006259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

WFS1基因的双等位变异与Wolfram综合征有关。然而,最近的文献表明,杂合变异体可导致多种表型,如Wolfram样综合征或Wolfram综合征的孤立特征。在这个病例报告中,我们提出了一个男性患者先天性白内障和主观主诉肌肉无力的历史。临床评估显示肌肉力量正常,基因组、生化、电生理和肌肉活检研究未发现先证者感知肌肉无力的潜在原因。全外显子组测序鉴定出WFS1基因的一个新的新生变异(c.1243G > T),代表了已发表文献中仅有的几个患有孤立先天性白内障和杂合WFS1变异的患者之一。与WFS1杂合变异相关的表型多样性表明,该基因应被认为是显性和双等位/隐性疾病形式的原因。未来的研究应侧重于阐明疾病的机制和WFS1的可变表达,以提高我们为患者和家庭提供有关疾病的预期指导的能力,包括适当的筛查和医疗干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel WFS1 variant associated with isolated congenital cataracts.

Biallelic variants in the WFS1 gene are associated with Wolfram syndrome. However, recent publications document that heterozygous variants can lead to a variety of phenotypes, such as Wolfram-like syndrome or isolated features of Wolfram syndrome. In this case report, we present a male patient with a history of congenital cataracts and subjective complaints of muscle weakness. Clinical assessment demonstrated normal muscle strength, and genomic, biochemical, electrophysiologic, and muscle biopsy studies did not identify a potential cause of the proband's perceived muscle weakness. Whole-exome sequencing identified a novel de novo variant in the WFS1 gene (c.1243G > T), representing one of only several patients in the published literature with isolated congenital cataracts and a heterozygous WFS1 variant. The variety of phenotypes associated with heterozygous variants in WFS1 suggests that this gene should be considered as a cause of both dominant and biallelic/recessive forms of disease. Future research should focus on elucidating the mechanism(s) of disease and variable expressivity in WFS1 in order to improve our ability to provide patients and families with anticipatory guidance about the disease, including appropriate screening and medical interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor Molecular Case Studies
Cold Spring Harbor Molecular Case Studies MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
3.20
自引率
0.00%
发文量
54
期刊介绍: Cold Spring Harbor Molecular Case Studies is an open-access, peer-reviewed, international journal in the field of precision medicine. Articles in the journal present genomic and molecular analyses of individuals or cohorts alongside their clinical presentations and phenotypic information. The journal''s purpose is to rapidly share insights into disease development and treatment gained by application of genomics, proteomics, metabolomics, biomarker analysis, and other approaches. The journal covers the fields of cancer, complex diseases, monogenic disorders, neurological conditions, orphan diseases, infectious disease, gene therapy, and pharmacogenomics. It has a rapid peer-review process that is based on technical evaluation of the analyses performed, not the novelty of findings, and offers a swift, clear path to publication. The journal publishes: Research Reports presenting detailed case studies of individuals and small cohorts, Research Articles describing more extensive work using larger cohorts and/or functional analyses, Rapid Communications presenting the discovery of a novel variant and/or novel phenotype associated with a known disease gene, Rapid Cancer Communications presenting the discovery of a novel variant or combination of variants in a cancer type, Variant Discrepancy Resolution describing efforts to resolve differences or update variant interpretations in ClinVar through case-level data sharing, Follow-up Reports linked to previous observations, Plus Review Articles, Editorials, and Position Statements on best practices for research in precision medicine.
期刊最新文献
Rapid genome diagnosis of alveolar capillary dysplasia leading to treatment in a child with respiratory and cardiac failure. Reclassification of the HPGD p.Ala13Glu variant causing primary hypertrophic osteoarthropathy. The importance of escalating molecular diagnostics in patients with low-grade pediatric brain cancer. Novel pathogenic PDX1 gene variant in a Korean family with maturity-onset diabetes of the young. Novel pathogenic UQCRC2 variants in a female with normal neurodevelopment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1