{"title":"纳米材料电化学传感器及其在甲胎蛋白检测中的应用。","authors":"Rongping Huang, Zhikun Zhang, Lu Gan, Dianfa Fan, Zhangbo Qian, Xinjun Sun, Yong Huang","doi":"10.24976/Discov.Med.202335175.10","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma development and many other tumors are closely related to alpha-fetoprotein (AFP), its determination can be used as a positive test for tumors. It is mainly used clinically as a serum marker to diagnose and monitor the efficacy of primary hepatocellular carcinoma. Therefore, a variety of biosensors have been developed to detect AFP. Electrochemical sensors integrate a variety of detection methods. They have inherent advantages over other types of sensors, they are fast, portable, simple, and highly sensitive. Some meaningful electrochemical biosensors work with nanomaterials acting as signal amplification elements or as signal amplification catalysts. This review introduced the field of biosensors and discuss about the use of nanomaterials in electrochemical sensing, specificity electrochemical biosensing of AFP. The study ends with a discussion about the prospects for nanomaterial-based signal amplification and future research directions.</p>","PeriodicalId":11379,"journal":{"name":"Discovery medicine","volume":"35 175","pages":"95-103"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Sensor Based on Nanomaterials and Its Application in the Detection of Alpha Fetoprotein.\",\"authors\":\"Rongping Huang, Zhikun Zhang, Lu Gan, Dianfa Fan, Zhangbo Qian, Xinjun Sun, Yong Huang\",\"doi\":\"10.24976/Discov.Med.202335175.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma development and many other tumors are closely related to alpha-fetoprotein (AFP), its determination can be used as a positive test for tumors. It is mainly used clinically as a serum marker to diagnose and monitor the efficacy of primary hepatocellular carcinoma. Therefore, a variety of biosensors have been developed to detect AFP. Electrochemical sensors integrate a variety of detection methods. They have inherent advantages over other types of sensors, they are fast, portable, simple, and highly sensitive. Some meaningful electrochemical biosensors work with nanomaterials acting as signal amplification elements or as signal amplification catalysts. This review introduced the field of biosensors and discuss about the use of nanomaterials in electrochemical sensing, specificity electrochemical biosensing of AFP. The study ends with a discussion about the prospects for nanomaterial-based signal amplification and future research directions.</p>\",\"PeriodicalId\":11379,\"journal\":{\"name\":\"Discovery medicine\",\"volume\":\"35 175\",\"pages\":\"95-103\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discovery medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.24976/Discov.Med.202335175.10\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202335175.10","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Electrochemical Sensor Based on Nanomaterials and Its Application in the Detection of Alpha Fetoprotein.
Hepatocellular carcinoma development and many other tumors are closely related to alpha-fetoprotein (AFP), its determination can be used as a positive test for tumors. It is mainly used clinically as a serum marker to diagnose and monitor the efficacy of primary hepatocellular carcinoma. Therefore, a variety of biosensors have been developed to detect AFP. Electrochemical sensors integrate a variety of detection methods. They have inherent advantages over other types of sensors, they are fast, portable, simple, and highly sensitive. Some meaningful electrochemical biosensors work with nanomaterials acting as signal amplification elements or as signal amplification catalysts. This review introduced the field of biosensors and discuss about the use of nanomaterials in electrochemical sensing, specificity electrochemical biosensing of AFP. The study ends with a discussion about the prospects for nanomaterial-based signal amplification and future research directions.
期刊介绍:
Discovery Medicine publishes novel, provocative ideas and research findings that challenge conventional notions about disease mechanisms, diagnosis, treatment, or any of the life sciences subjects. It publishes cutting-edge, reliable, and authoritative information in all branches of life sciences but primarily in the following areas: Novel therapies and diagnostics (approved or experimental); innovative ideas, research technologies, and translational research that will give rise to the next generation of new drugs and therapies; breakthrough understanding of mechanism of disease, biology, and physiology; and commercialization of biomedical discoveries pertaining to the development of new drugs, therapies, medical devices, and research technology.